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We report on calculation of spin-dependent thermal transport through a quantum ring with the 
Rashba spin-orbit interaction. The quantum ring is connected to two electron reservoirs with different 
temperatures. Tuning the Rashba coupling constant, degenerate energy states are formed leading to a 
suppression of the heat and thermoelectric currents. In addition, the quantum ring is coupled to a photon 
cavity with a single photon mode and linearly polarized photon field. In a resonance regime, when the 
photon energy is approximately equal to the energy spacing between two lowest degenerate states of 
the ring, the polarized photon field can significantly control the heat and thermoelectric currents in the 
system. The roles of the number of photon initially in the cavity, and electron–photon coupling strength 
on spin-dependent heat and thermoelectric currents are presented.

© 2018 Elsevier B.V. All rights reserved.

The advances in nanoscale system have largely raised the de-
velopment in thermoelectric materials that can convert thermal 
energy into the electrical energy [1]. The most interesting quan-
tum properties are reduced dimensionality [2–4] and quantized 
energy levels [5] that lead to increase the thermal efficiency of 
nanoscale systems. First, Hicks and Dreslhaus in 1993 suggested to 
use low dimensional structure for enhancement of the thermal ef-
ficiency via creasing figure of merit. They showed that the figure of 
merit increases as the dimensionality of the system decreases [6]. 
What’s more, the thermal transport behavior of nanoscale mate-
rials can be controlled by tuning the gate voltage [7]. This may 
open a new window to study the efficient thermoelectric ma-
terials. Consequently, the results such as the Mott formula and 
Wiedemann–Freanz law may not hold in nanodevices due to the 
quantum phenomena [8].

Thermal transport is currently an active field concerned with 
investigation the spin-dependent of heat and thermoelectric trans-
port in a nanoscale materials [4,9]. It has been demonstrated that 
the spin accumulation strongly suppresses the thermoelectric ef-
ficiency, and a pure spin thermopower can be obtained in the 
presence of the magnetic field [10]. Furthermore, the spin conduc-
tance and the spin Seebeck coefficient have been calculated in a 
quantum dot system and shown that both spin conductance and 
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Seebeck coefficient are increased by the increase of magnetic field 
and polarization of leads, resulting in enhancement of spin figure 
of merit [11].

On the other hand, the influences of photon field on ther-
mal transport have been considered. It has been shown that the 
interplay between photon and thermally induced electron popu-
lations results in a switch of the current sign [12]. In the linear 
response regime, using a Keldysh nonequilibrium Green function 
technique, thermal transport is studied in a nanoscale system cou-
pled a lead. By applying a photon field to one of the leads, heat 
flows mostly from the dark to the bright lead and almost irre-
spective of the direction of the thermal gradient. They attribute 
this effect to photon-induced opening of additional transport chan-
nels below the Fermi energy. The photon field can change both the 
magnitude and the sign of the electrical bias voltage induced by 
a temperature gradient [13]. In our previous work, we show the 
influences of a quantized photon field on thermoelectric current 
in a quantum wire. We found that the thermoelectric current is 
inverted for the off-resonant photon field due to participation of 
photon replica states in the transport. Furthermore, a reduction in 
the current is recorded for the resonant photon field, a direct con-
sequence of the Rabi-splitting [14,15].

In the present paper, we investigate the thermal transport in 
a quantum ring including the Coulomb interaction and electron–
photon interactions. Taking into a account a Rashba spin-orbit 
coupling in the ring system, the spin-dependent heat and thermo-
electric currents are studied using the generalized non-Markovian 
master equation. We show the influences of the Rashba spin-orbit 
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coupling and the photon field on both the heat and thermoelectric 
currents.

The paper is organized as follows: In Sec. 1, we present the 
model describing a quantum ring coupled to a photon cavity. Sec-
tion 2 shows the numerical results and discussion. Concluding re-
marks are addressed in Sec. 3.

1. Theory

We assume a quantum ring coupled to a photon field and con-
nected to two electron reservoirs where the photon cavity is much 
larger than the quantum ring. Below, we present the Hamiltonian 
of the ring system and the formalism that describes the time evo-
lution of the electrons in the system.

1.1. Hamiltonian of the system

The present quantum system can defined by the following 
Hamiltonian

Ĥ S =
∫

d2r �̂
†
(r)

[(
p̂2

2m∗ + Vr(r)
)

+ H Z

+ Ĥ R(r)
]
�̂(r) + Ĥee + h̄ωγ â†â. (1)

Herein, the total momentum operator of the central system cou-
pled to the cavity is

p̂(r) = h̄

i
∇ + e

c

[
Â(r) + Âγ (r)

]
, (2)

where the magnetic vector potential is Â(r) = −B yx̂ with B = B ẑ, 
and the photon vector potential is Âγ (r) which is defined in terms 
of the photon creation (â†) and annihilation (â) operators as

Âγ = A(eâ + e∗â†), (3)

with e = ex for the x-polarized and e = ey the y-polarized of the 
photon field [16]. The ring potential is defined by Vr(r) which will 
be defined later.

The Zeeman Hamiltonian defined in the second term of Eq. (1)
gives the interaction of electron spin with the external magnetic 
field which is introduced by H Z = 1

2 (μB gS Bσz) with μB the Bohr 
magneto and gS is the electron spin g-factor.

In addition, the Rashba-spin orbit coupling defined in the third 
terms of Eq. (1) describes the interaction between the spin and the 
orbital motion of the electron

Ĥ R(r) = α

h̄

(
σx p̂ y(r) − σy p̂x(r)

)
(4)

with α the Rashba spin orbit (RSO) coupling constant that can be 
tuned by electric field, and σx and σy are the Pauli matrices. The 
Coulomb interaction presented in the central system is defined by 
Ĥee [17,18] and the free photon Hamiltonian is h̄ωγ â†â in the cav-
ity with h̄ωγ the photon energy.

The components of the spinor vector is �̂(r) =
(

�̂(↑, r)
�̂(↓, r)

)
and 

�̂
†
(r) = (

�̂†(↑, r), �̂†(↓, r)
)
, where �̂(x) = ∑

a ψ S
a (x)Ĉa is the 

field operator with x ≡ (r, σ), σ ∈ {↑, ↓} and the annihilation op-
erator, Ĉa , for the single-electron state (SES) ψ S

a (x) in the quantum 
ring system.

The time-convolutionless generalized master equation (TCL-
GME) is utilized to investigate the transport properties of the sys-
tem. The TCL-GME is local in time and satisfies the positivity for 
the many-body state occupation in the reduced density operator 
(RDO). Before the central system is coupled to the leads, the total 

Fig. 1. (Color online.) schematic diagram shows the quantum ring (black color) con-
nected to the leads where the temperature of the left lead (T L ) (red color) is higher 
than the temperature of the right lead (T R ) (blue color). The green arrows indicate 
the external magnetic fields and the brown zigzag display the photon field in the 
cavity.

density matrix is the product of the density matrices of the sys-
tem and the leads ρ̂T . The RDO of the system after the coupling is 
defined as

ρ̂S(t) = Trl(ρ̂T ) (5)

where l ∈ {L, R} refers to the left (L) and the right (R), respectively. 
In our calculations we integrate the GME to t = 220 ps, a point in 
time late in the transient regime when the system is approaching 
the steady state.

The heat current is the ratio of the transferred heat over time. 
The heat current (IH ) in terms of the reduced density operator can 
be introduced as

IH
l = cl Trl

[ d

dt
ρ̂S,l(t)(Ĥ S − μN̂e)

]

=
∑
αβ

(α̂| ˙̂ρS,l|β̂)(Eα − μN̂e)δαβ (6)

where cL = 1 and cR = −1, ρ̂S,l is the reduced density operator in 
terms of the l lead, μ = μL = μR, and N̂e is the electron number 
operator.

Furthermore, the thermoelectric current (ITH) can be defined as

ITH
l = clTr

[ ˙̂ρS,l Q̂
]

(7)

with the charge operator is Q̂ = e 
∫

d2r�̂
†
(r)�̂(r).

1.2. Quantum ring system

The quantum ring connected to the electron reservoirs or leads 
with different temperatures is schematically displayed in Fig. 1, 
where the temperature of the left (right) lead is labeled as T L (T R ), 
respectively. The total system is exposed to an external magnetic 
field B (green arrows) and the ring system is coupled to a photon 
field (brown zigzag arrows).

The potential of the quantum ring can be defined by

Vr(r) =
6∑

i=1

V i exp
[
− (γxi(x − x0i))

2 − (
γyi y

)2
]

+ 1

2
m∗�2

0 y2, (8)

where V i , γxi , and γyi are constants shown in Table 1. x03 = ε is a 
small numerical symmetry breaking parameter and |ε| = 10−5 nm
is enough for numerical stability. The characteristic energy of the 
electron confinement in the ring is defined by the second term of 
Eq. (8) with energy h̄�0 [19].
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