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We study quantum-state transfer in X X spin-1/2 chains where both communicating spins are weakly 
coupled to a channel featuring disordered on-site magnetic fields. Fluctuations are modeled by long-
range correlated sequences with self-similar profile obeying a power-law spectrum. We show that the 
channel is able to perform almost perfect quantum-state transmissions even in the presence of significant 
amounts of disorder provided the degree of those correlations is strong enough, with the cost of having 
long transfer times and unavoidable timing errors. Still, we show that the lack of mirror symmetry in 
the channel does not affect much the likelihood of having high-quality outcomes. Our results suggest
that coexistence between localized and delocalized states can diminish effects of static perturbations in 
solid-state devices for quantum communication.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Spin chains have been widely addressed as quantum channels 
for (especially short-distance) communication protocols since pro-
posed in Ref. [1] that spin chains can be used for carrying out 
transfer of quantum information with minimal control, i.e., with no 
manipulation being required during the transmission process. Basi-
cally, Alice prepares and sends out an arbitrary qubit state through 
the channel and Bob only needs to make a measurement at some 
prescribed time. The evolution itself is given by the natural dy-
namics of the system.

Since then, several schemes for high-fidelity quantum-state 
transfer (QST) [1–19] and entanglement creation and distribution 
[20–33] in spin chains have been put forward (for reviews on 
the subject, see Refs. [34–36]). Perfect QST can be attained in 
fully modulated networks [2–4,37] (cf. [38,39] for proof-of-concept 
realizations). Other less-demanding (on the engineering side) ap-
proaches rely on optimization of the outer couplings of the chain 
[13] or setting very weak couplings between the communicating 
parties and the bulk of the chain [6–9,11,19,27–29] Similarly, one 
can also strategically apply local strong magnetic fields in order to 
establish resonances between the sender and receiver [16,17,23].

One factor that should be taken into account when dealing with 
the above protocols is disorder arising from, e.g. manufacturing er-
rors, that could potentially damage the planned output [29,40–50]. 
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It is known that the slightest amount of disorder is already capable 
of promoting Anderson localization effects [51] in 1D systems. That 
is not necessarily true, however, in the case of correlated disorder. 
The breakdown of Anderson localization has been reported when 
short- [52,53] or long-range correlations [33,54–60] are present in 
disordered 1D models. In particular, the latter case finds a set of 
extended states in the middle of the band with well detached mo-
bility edges thereby signalling an Anderson-type metal-insulator 
transition [54,55]. This is also manifested in low-dimensional spin 
chains [33,57]. Long-range correlations with power-law spectrum 
can actually be found in various physical systems such as in, to 
name a few, DNA molecules [61], plasma fluctuations [62], pat-
terns in surface growth [63], and graphene nanoribbons [64]. Other 
kinds of correlated defects have been considered in [40,42] in the 
context of QST.

Here, we consider a one-dimensional X X spin chain in which 
the local magnetic fields (on-site potentials) of the channel fol-
low a long-range correlated disordered distribution with power-
law spectrum S(k) ∝ 1/kα , with k being the corresponding wave 
number and α being a characteristic exponent governing the de-
gree of such correlations. We show that when perturbatively at-
taching two communicating (end) spins to the channel and setting 
their frequency to lie in the middle of the band, we are still able 
to perform nearly perfect QST rounds in the presence of corre-
lated disorder, the major drawback being the requirement of long 
transfer times and loss of accuracy in the measurement time. Sur-
prisingly, we find it happens even in the presence of considerable 
amounts of asymmetries in the channel. The reason for that is the 
appearance of extended states in the middle of the band which 
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offers the necessary end-to-end effective symmetry thereby sup-
porting the occurrence of Rabi-like oscillations between the sender 
and receiver spins. We further show that perfect mirror symmetry 
is not a crucial factor as long as there exists a proper set of delo-
calized eigenstates in the channel.

In the following, Sec. 2, we introduce the X X spin Hamiltonian 
with on-site long-range correlated disorder. In Sec. 3 we derive 
an effective two-site Hamiltonian that accounts for the way both 
communicating parties are coupled to the channel. In Sec. 4 we 
display the results for the QST fidelity and timing errors. Our final 
remarks are addressed in Sec. 5.

2. Spin-chain Hamiltonian

We consider a pair of spins (communicating parties) coupled 
to a one-dimensional quantum channel consisting altogether of 
spin-1/2 chain with open boundaries featuring X X-type exchange 
interactions described by Hamiltonian Ĥ = Ĥch + Ĥ int with (h̄ = 1)

Ĥch =
N∑

i=1
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2
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where σ̂ x,y,z
i are the Pauli operators for the i-th spin, ωi is the 

local (on-site) magnetic field, and J i, j is the exchange coupling 
strength between nearest-neighbor sites. Supposing the sender (s) 
and receiver (r) spins are connected to sites 1 and N from the 
channel at rates gs and gr , respectively, the interaction part reads
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Note that since Ĥ conserves the total magnetization of the system, 
i.e., 

[
Ĥ,

∑
i σ̂

z
i

]
= 0, the Hamiltonian can be split into independent 

subspaces with fixed number of excitations. Here we focus on the 
single-excitation Hilbert space spanned by the computational basis 
|i〉 = σ̂+

i | ↓↓ . . . ↓〉 with i = r, s, 1, . . . , N , that means every spin 
pointing down but the one located at the i-th position. In this case, 
we end up with a hopping-like matrix with N + 2 dimensions.

Let us now make a few assumptions in regard to the channel 
described by Hamiltonian (1). Here we consider the spin-exchange 
coupling strengths to be uniform J i, j → J and, in order to study 
the robustness of the channel against disorder we introduce cor-
related static fluctuations on the on-site magnetic field ωn , n =
1, . . . , N . A straightforward way to generate random sequences fea-
turing internal long-range correlations is through the trace of the 
fractional Brownian motion with power-law spectrum S(k) ∝ 1/kα

[54,59]

ωn = J
N/2∑
k=1

k−α/2cos

(
2πnk

N
+ φk

)
, (3)

where k = 1/λ, is the inverse modulation wavelength, {φk} are 
random phases distributed uniformly within [0,2π ], and α con-
trols the degree of correlations. This parameter is related to the 
so-called Hurst exponent [65], H = (α − 1)/2, which characterizes 
the self-similar character of a given sequence. When α = 0, we re-
cover the case of uncorrelated disorder (white noise) and for α > 0
underlying long-range correlations take place. The resulting long-
range correlated sequence becomes nonstationary for α > 1. Fur-
thermore, according to the usual terminology, when α > 2 (α < 2) 
the series increments become persistent (anti-persistent). Interest-
ingly, this brings about serious consequences on the spectrum pro-
file of the system. As shown in [54,59], when α > 2 there occurs 

the appearance of delocalized states in the middle of the one-
particle spectrum band. In the QST scenario with weakly-coupled 
spins r and s, i.e. gs, gr � J , that promotes a strong enhance-
ment in the likelihood of disorder realizations with very-high fi-
delities F , most of them yielding F ≈ 1. This will be elucidated 
along the paper.

Hereafter we set the sequence generated by Eq. (3) to follow a 
normalized distribution, that is ωn → (ωn − 〈ωn〉) /

√
〈ω2

n〉 − 〈ωn〉2. 
We also stress that such a disordered distribution has no typical 
length scale which is a property of many natural stochastic series 
[66].

3. Effective two-site description

We now work out a perturbative approach to write down a 
proper representation of an effective Hamiltonian involving only 
the sender and receiver spins provided they are very weakly cou-
pled to the channel. Intuitively, we expect they span their own 
subspace with renormalized parameters and thus QST takes place 
via effective Rabi oscillations between them [7,19]. Our goal here 
is to investigate the influence of disorder in such subspaces and 
evaluate their resilience to imperfections in the channel.

Following a second-order perturbation approach (for details, see 
Refs. [7,8] or Supplementary Material), we can obtain an effective 
Hamiltonian projected onto {|s〉, |r〉} which reads

Ĥsr =
(

hs − J ′
− J ′ hr

)
, (4)

with

hν = ων − ε2 g2
ν

∑
k

|aνk|2
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ν ∈ {s, r}, and

J ′ = ε2 gs gr

2

∑
k

(
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Ek − ωr

)
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where ε being the perturbation parameter, ask ≡ 〈1|Ek〉, ark ≡
〈N|Ek〉, and {|Ek〉} are the eigenstates of the channel [Eq. (1)] with 
corresponding (nondegenerate) frequencies {Ek}. Note that we are 
assuming all parameters to be real.

Hamiltonian (4) describes a two-level system which performs 
Rabi-like oscillations in a time scale set by the inverse of the gap 
between its normal frequencies. In order to have as perfect as 
possible QST one should guarantee that hs = hr . This is automati-
cally fulfilled, given ωs = ωr and gs = gr = g , for mirror-symmetric 
chains since |ask| = |ark| for every k. In that case, for a noiseless 
uniform channel and in the limit of very weak outer couplings, 
which implies in the validity of Hamiltonian (4), an initial state 
prepared in |s〉 will evolve in time to |r〉 with nearly unit ampli-
tude at times τ = nπ/(2 J ′) = nπ J/(2ε2 g2), with n being an odd 
integer [6,7]. Note that as N increases more eigenstates get in the 
middle of the spectrum and thus εgν must be adjusted accordingly 
(we shall drop out the perturbation parameter ε hereafter).

4. Quantum-state transfer protocol

4.1. General scheme

In the standard QST procedure [1], Alice is able to control 
the spin located at position s and wants to send an arbitrary 
qubit |φ〉s = α| ↓〉s + β| ↑〉s to Bob which has access to spin r. 
Now let us assume that the rest of the chain is initialized in 
the fully polarized spin-down state so that the whole state reads 
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