ARTICLE IN PRESS

Physics Letters A ••• (••••) •••-•••

Contents lists available at ScienceDirect

Physics Letters A

PLA:25021

www.elsevier.com/locate/pla

Novel algebraic aspects of Liouvillian integrability for two-dimensional polynomial dynamical systems

van der Pol system are constructed.

Maria V. Demina

Department of Applied Mathematics, National Research Nuclear University "MEPhl", 31 Kashirskoe Shosse, 115409 Moscow, Russian Federation

ARTICLE INFO

ABSTRACT

Article history: Received 27 January 2018 Received in revised form 22 March 2018 Accepted 23 March 2018 Available online xxxx Communicated by C.R. Doering

Keywords: Invariant algebraic curves Darboux polynomials Liouvillian first integrals Duffing oscillator Duffing–van der Pol oscillator

1. Introduction

Integrating a dynamical system is one of the major problems of analysis. Existence of invariant algebraic curves and exponential factors is a substantial measure of integrability. In this article our goal is to derive the general structure of irreducible invariant algebraic curves for a generic two-dimensional polynomial dynamical system. We apply our results to the famous Duffing and Duffing-van der Pol oscillators arising in a variety of applications, see [1] and references therein. These models and their generalizations have been intensively studied in recent years [2–7]. We solve completely the problem of Liouvillian integrability for the classical force-free Duffing and Duffing-van der Pol oscillators. It seems that this problem for generic values of the parameters has not yet been studied.

A polynomial vector field in \mathbb{C}^2 can be defined as

$$X = P(x, y)\frac{\partial}{\partial x} + Q(x, y)\frac{\partial}{\partial y}, \quad P(x, y), Q(x, y) \in \mathbb{C}[x, y].$$
(1.1)

By $\mathbb{C}[x, y]$ we denote the ring of polynomials in the variables *x* and *y* with coefficients in \mathbb{C} . The dynamical system associated to *X* reads as

$$x_t = P(x, y), \quad y_t = Q(x, y).$$
 (1.2)

https://doi.org/10.1016/j.physleta.2018.03.037 0375-9601/© 2018 Elsevier B.V. All rights reserved. A non-constant function $I: \mathbb{C}^2 \to \mathbb{C}$ is called a first integral of the polynomial vector field X on an open subset $D \subset \mathbb{C}^2$ if I(x(t), y(t)) = C with C being a constant for all values of t such that the solution (x(t), y(t)) of X is defined on D. We say that the vector field X is Liouvillian integrable if there exists a Liouvillian first integral I of X. Generally speaking, a function is Liouvillian if it can be expressed using quadratures of elementary functions, for more details and strict definitions see [8–10].

© 2018 Elsevier B.V. All rights reserved.

The general structure of irreducible invariant algebraic curves for a polynomial dynamical system in \mathbb{C}^2

is found. Necessary conditions for existence of exponential factors related to an invariant algebraic curve

are derived. As a consequence, all the cases when the classical force-free Duffing and Duffing-van der Pol

oscillators possess Liouvillian first integrals are obtained. New exact solutions for the force-free Duffing-

An algebraic curve F(x, y) = 0, $F(x, y) \in \mathbb{C}[x, y] \setminus \mathbb{C}$ is an invariant algebraic curve (or a Darboux polynomial) of the vector field *X* if it satisfies the following equation $XF = \lambda(x, y)F$, i.e.

$$P(x, y)F_x + Q(x, y)F_y = \lambda(x, y)F, \qquad (1.3)$$

where $\lambda(x, y) \in \mathbb{C}[x, y]$ is a polynomial called the cofactor of the invariant curve F(x, y). It is straightforward to find that the polynomial $\lambda(x, y)$ is of degree at most m - 1, where m is the degree of $X: m = \max\{\deg P, \deg Q\}, [8,9]$.

The function $E = \exp(g/f) \notin \mathbb{C}$ with coprime polynomials $g, h \in \mathbb{C}[x, y]$ is an exponential factor of the vector field X whenever it satisfies the equation $XE = \varrho(x, y)E$. The polynomial $\varrho(x, y) \in \mathbb{C}[x, y]$ is called the cofactor of the exponential factor E and is of degree at most m - 1. It can be easily shown that if the exponential factor $E = \exp(g/f)$ contains a non-constant polynomial f, then f is an invariant algebraic curve of X [11,12]. The exponential factors arise, when invariant algebraic curves degenerate [11,12]. This concept of degenerate invariant algebraic curves was introduced by Christopher [11,12].

E-mail address: mvdemina@mephi.ru.

Please cite this article in press as: M.V. Demina, Novel algebraic aspects of Liouvillian integrability for two-dimensional polynomial dynamical systems, Phys. Lett. A (2018), https://doi.org/10.1016/j.physleta.2018.03.037

2

A non-constant function $R: \mathbb{C}^2 \to \mathbb{C}$ is an integrating factor of the polynomial vector field *X* on an open subset $D \subset \mathbb{C}^2$ if $XR = -R \operatorname{div}(X)$ on *D*. Recall that $\operatorname{div}(X) = P_X + Q_Y$.

It is known that the problem of proving Liouvillian integrability or non-integrability of a polynomial vector field X and associated dynamical system (1.2) can be reduced to the problem of constructing all irreducible invariant algebraic curves of X and all exponential factors of X [8–12]. Note that there exist Liouvillian integrable polynomial dynamical systems that have no invariant algebraic curves [13].

The following powerful theorems are valid.

Theorem 1.1. Let $F_j = 0$, $j = 1, ..., r \in \mathbb{N}_0$ be irreducible invariant algebraic curves of X and $E_k = \exp(g_k/f_k)$, $k = 1, ..., s \in \mathbb{N}_0$ be exponential factors of X. Then the function

$$F_1^{d_1} \dots F_r^{d_r} E_1^{e_1} \dots E_s^{e_s}, \quad d_1, \dots, d_r \in \mathbb{C}, \quad e_1, \dots, e_s \in \mathbb{C},$$
(1.4)

is a first integral (possibly, multi-valued) of X if and only if d_j , e_k are not all zero and the following condition is valid

$$\sum_{j=1}^{r} d_j \lambda_j + \sum_{k=1}^{s} e_k \varrho_k = 0,$$
(1.5)

where λ_j is a cofactor of F_j , ϱ_k is a cofactor of E_k .

Note that the function of the form (1.4) is called a Darboux function. Obviously, any Darboux function is Liouvillian.

Theorem 1.2. Under the assumptions of Theorem 1.1 the polynomial vector field X has a Liouvillian first integral if and only if it has an integrating factor of the form (1.4).

Theorem 1.3. Under the assumptions of Theorem 1.1 the Darboux function given in (1.4) is an integrating factor of X if and only if the following condition is valid

$$\sum_{j=1}^{r} d_{j}\lambda_{j} + \sum_{k=1}^{s} e_{k}\varrho_{k} = -di\nu(X).$$
(1.6)

Theorems 1.1 and 1.3 follow from classical theory of Darboux integrability, see [8,9,14]. Theorem 1.2 was proved by Singer [10] and further strengthened by Christopher [11]. A considerable impact in the study of Liouvillian integrability of polynomial dynamical systems has been made by Llibre and Valls, see for example [15,16].

Our aim in the present article is to establish the structure of irreducible invariant algebraic curves of a polynomial vector field X. Regarding the variable y as dependent and the variable x as independent, we find that the function y(x) satisfies the following first-order ordinary differential equation

$$P(x, y)y_{x} - Q(x, y) = 0.$$
(1.7)

In what follows we suppose that the polynomials P(x, y), Q(x, y) do not have non-constant common factors.

A Puiseux series in a neighborhood of the point $x = \infty$ is defined as

$$y(x) = \sum_{k=0}^{+\infty} b_k x^{\frac{l_0}{n} - \frac{k}{n}}$$
(1.8)

where $l_0 \in \mathbb{Z}$, $n \in \mathbb{N}$. It follows from the classical results that a Puiseux series of the form (1.8) that satisfy the equation F(x, y) = 0, $F(x, y) \in \mathbb{C}[x, y]$ is convergent in a neighborhood of the point

 $x = \infty$ (the point $x = \infty$ is excluded from domain of convergence if $l_0 < 0$) [17]. The set of all Puiseux series of the form (1.8) forms a field, which we denote by $\mathbb{C}_{\infty}\{x\}$. In the next section we shall prove that if y(x) is a Puiseux series solving the equation F(x, y) = 0, $F_y \neq 0$ with F(x, y) being an invariant algebraic curve of the polynomial vector field *X*, then the series y(x) satisfies equation (1.7).

Recall that if n > 1 then the convergence of the corresponding series is understood in the sense that a certain branch of the *n*-th root is chosen and a cut forbidding going around the branch point is introduced. Further, there exists a compact subset in the domain of convergence of the Puiseux series satisfying the equation F(x, y) = 0 such that convergence of the corresponding series is uniform.

All the Puiseux series that solve equation (1.7) can be obtained with the help of the Painlevé methods [14,18–20], for more details see section 3.

The main contributions of the present article are the following five theorems.

Theorem 1.4. Let $F(x, y) \in \mathbb{C}[x, y] \setminus \mathbb{C}$, $F_y \neq 0$ be an irreducible invariant algebraic curve of polynomial vector field X and related dynamical system (1.2). Then F(x, y) takes the form

$$F(x, y) = \left\{ \mu(x) \prod_{j=1}^{N} \left\{ y - y_j(x) \right\} \right\}_+, \quad N \in \mathbb{N},$$
(1.9)

where $\mu(x) \in \mathbb{C}[x]$ and $y_1(x), \ldots, y_N(x)$ are pairwise distinct Puiseux series in a neighborhood of the point $x = \infty$ that satisfy equation (1.7). The symbol $\{W(x, y)\}_+$ means that we take the polynomial part of the expression W(x, y). Moreover, the degree of F(x, y) with respect to y does not exceed the number of distinct Puiseux series of the form (1.8) satisfying equation (1.7) whenever the latter is finite.

Consequence. If neither Puiseux series in a neighborhood of the point $x = \infty$ satisfy equation (1.7) nor the functions of the form (1.9) constructed with the help of all possible combinations of admissible Puiseux series are polynomial, then invariant algebraic curves of vector X (if any) are of the form F(x). Here an admissible Puiseux series means that this series is of the form (1.8) and satisfies equation (1.7).

The inverse theorem is also valid.

Theorem 1.5. Suppose that $y_1(x), \ldots, y_N(x)$ are pairwise distinct *Puiseux series in a neighborhood of the point* $x = \infty$ *that satisfy equation (1.7). Let the polynomial* $\mu(x) \in \mathbb{C}[x]$ *be such that the following expression*

$$F(x, y) = \mu(x) \prod_{j=1}^{N} \left\{ y - y_j(x) \right\}$$
(1.10)

is an irreducible in $\mathbb{C}[x, y]$ polynomial, i.e. the non-polynomial part in (1.10) vanishes producing the polynomial F(x, y), then F(x, y) is an irreducible invariant algebraic curve of the polynomial vector field X and related dynamical system (1.2).

Remark. Theorems 1.4 and 1.5 introduce a novel algebraic tool for finding all irreducible invariant algebraic curves explicitly. At the first step, one should obtain all the Puiseux series near the point $x = \infty$ that satisfy equation (1.7). At the second step, it is necessary to consider different combinations of the Puiseux series and require that the non-polynomial part of expression (1.10) vanishes. Restrictions on the polynomial $\mu(x)$ (if any) can be found balancing higher-order terms (with respect to y) in equation (1.3).

Please cite this article in press as: M.V. Demina, Novel algebraic aspects of Liouvillian integrability for two-dimensional polynomial dynamical systems, Phys. Lett. A (2018), https://doi.org/10.1016/j.physleta.2018.03.037

Download English Version:

https://daneshyari.com/en/article/8203468

Download Persian Version:

https://daneshyari.com/article/8203468

Daneshyari.com