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The general structure of irreducible invariant algebraic curves for a polynomial dynamical system in C2

is found. Necessary conditions for existence of exponential factors related to an invariant algebraic curve 
are derived. As a consequence, all the cases when the classical force-free Duffing and Duffing–van der Pol 
oscillators possess Liouvillian first integrals are obtained. New exact solutions for the force-free Duffing–
van der Pol system are constructed.
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1. Introduction

Integrating a dynamical system is one of the major problems 
of analysis. Existence of invariant algebraic curves and exponen-
tial factors is a substantial measure of integrability. In this article 
our goal is to derive the general structure of irreducible invari-
ant algebraic curves for a generic two-dimensional polynomial dy-
namical system. We apply our results to the famous Duffing and 
Duffing–van der Pol oscillators arising in a variety of applications, 
see [1] and references therein. These models and their generaliza-
tions have been intensively studied in recent years [2–7]. We solve 
completely the problem of Liouvillian integrability for the classi-
cal force-free Duffing and Duffing–van der Pol oscillators. It seems 
that this problem for generic values of the parameters has not yet 
been studied.

A polynomial vector field in C2 can be defined as

X = P (x, y)
∂

∂x
+ Q (x, y)

∂

∂ y
, P (x, y), Q (x, y) ∈C[x, y]. (1.1)

By C[x, y] we denote the ring of polynomials in the variables x
and y with coefficients in C. The dynamical system associated to 
X reads as

xt = P (x, y), yt = Q (x, y). (1.2)
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A non-constant function I: C2 → C is called a first integral 
of the polynomial vector field X on an open subset D ⊂ C2 if 
I(x(t), y(t)) = C with C being a constant for all values of t such 
that the solution (x(t), y(t)) of X is defined on D . We say that the 
vector field X is Liouvillian integrable if there exists a Liouvillian 
first integral I of X . Generally speaking, a function is Liouvillian if 
it can be expressed using quadratures of elementary functions, for 
more details and strict definitions see [8–10].

An algebraic curve F (x, y) = 0, F (x, y) ∈C[x, y] \C is an invari-
ant algebraic curve (or a Darboux polynomial) of the vector field 
X if it satisfies the following equation X F = λ(x, y)F , i.e.

P (x, y)Fx + Q (x, y)F y = λ(x, y)F , (1.3)

where λ(x, y) ∈ C[x, y] is a polynomial called the cofactor of the 
invariant curve F (x, y). It is straightforward to find that the poly-
nomial λ(x, y) is of degree at most m − 1, where m is the degree 
of X : m = max{deg P , deg Q }, [8,9].

The function E = exp(g/ f ) /∈ C with coprime polynomials 
g, h ∈ C[x, y] is an exponential factor of the vector field X when-
ever it satisfies the equation X E = �(x, y)E . The polynomial 
�(x, y) ∈ C[x, y] is called the cofactor of the exponential factor 
E and is of degree at most m − 1. It can be easily shown that if 
the exponential factor E = exp(g/ f ) contains a non-constant poly-
nomial f , then f is an invariant algebraic curve of X [11,12]. The 
exponential factors arise, when invariant algebraic curves degener-
ate [11,12]. This concept of degenerate invariant algebraic curves 
was introduced by Christopher [11,12].
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A non-constant function R: C2 → C is an integrating factor of 
the polynomial vector field X on an open subset D ⊂ C2 if X R =
−R div(X) on D . Recall that div(X) = P x + Q y .

It is known that the problem of proving Liouvillian integrability 
or non-integrability of a polynomial vector field X and associated 
dynamical system (1.2) can be reduced to the problem of con-
structing all irreducible invariant algebraic curves of X and all 
exponential factors of X [8–12]. Note that there exist Liouvillian 
integrable polynomial dynamical systems that have no invariant 
algebraic curves [13].

The following powerful theorems are valid.

Theorem 1.1. Let F j = 0, j = 1, . . . , r ∈ N0 be irreducible invariant 
algebraic curves of X and Ek = exp(gk/ fk), k = 1, . . . , s ∈ N0 be ex-
ponential factors of X. Then the function

F d1
1 . . . F dr

r Ee1
1 . . . Ees

s , d1, . . . ,dr ∈C, e1, . . . , es ∈C, (1.4)

is a first integral (possibly, multi-valued) of X if and only if d j , ek are not 
all zero and the following condition is valid

r∑
j=1

d jλ j +
s∑

k=1

ek�k = 0, (1.5)

where λ j is a cofactor of F j , �k is a cofactor of Ek.

Note that the function of the form (1.4) is called a Darboux 
function. Obviously, any Darboux function is Liouvillian.

Theorem 1.2. Under the assumptions of Theorem 1.1 the polynomial vec-
tor field X has a Liouvillian first integral if and only if it has an integrating 
factor of the form (1.4).

Theorem 1.3. Under the assumptions of Theorem 1.1 the Darboux func-
tion given in (1.4) is an integrating factor of X if and only if the following 
condition is valid

r∑
j=1

d jλ j +
s∑

k=1

ek�k = −div(X). (1.6)

Theorems 1.1 and 1.3 follow from classical theory of Darboux 
integrability, see [8,9,14]. Theorem 1.2 was proved by Singer [10]
and further strengthened by Christopher [11]. A considerable im-
pact in the study of Liouvillian integrability of polynomial dynam-
ical systems has been made by Llibre and Valls, see for example 
[15,16].

Our aim in the present article is to establish the structure of ir-
reducible invariant algebraic curves of a polynomial vector field X . 
Regarding the variable y as dependent and the variable x as in-
dependent, we find that the function y(x) satisfies the following 
first-order ordinary differential equation

P (x, y)yx − Q (x, y) = 0. (1.7)

In what follows we suppose that the polynomials P (x, y), Q (x, y)

do not have non-constant common factors.
A Puiseux series in a neighborhood of the point x = ∞ is de-

fined as

y(x) =
+∞∑
k=0

bkx
l0
n − k

n (1.8)

where l0 ∈ Z, n ∈ N. It follows from the classical results that a 
Puiseux series of the form (1.8) that satisfy the equation F (x, y) =
0, F (x, y) ∈ C[x, y] is convergent in a neighborhood of the point 

x = ∞ (the point x = ∞ is excluded from domain of convergence 
if l0 < 0) [17]. The set of all Puiseux series of the form (1.8)
forms a field, which we denote by C∞{x}. In the next section 
we shall prove that if y(x) is a Puiseux series solving the equa-
tion F (x, y) = 0, F y �≡ 0 with F (x, y) being an invariant algebraic 
curve of the polynomial vector field X , then the series y(x) satis-
fies equation (1.7).

Recall that if n > 1 then the convergence of the correspond-
ing series is understood in the sense that a certain branch of the 
n-th root is chosen and a cut forbidding going around the branch 
point is introduced. Further, there exists a compact subset in the 
domain of convergence of the Puiseux series satisfying the equa-
tion F (x, y) = 0 such that convergence of the corresponding series 
is uniform.

All the Puiseux series that solve equation (1.7) can be obtained 
with the help of the Painlevé methods [14,18–20], for more details 
see section 3.

The main contributions of the present article are the following 
five theorems.

Theorem 1.4. Let F (x, y) ∈C[x, y] \C, F y �≡ 0 be an irreducible invari-
ant algebraic curve of polynomial vector field X and related dynamical 
system (1.2). Then F (x, y) takes the form

F (x, y) =
⎧⎨
⎩μ(x)

N∏
j=1

{
y − y j(x)

}⎫⎬⎭
+

, N ∈N, (1.9)

where μ(x) ∈ C[x] and y1(x), . . . , yN(x) are pairwise distinct Puiseux 
series in a neighborhood of the point x = ∞ that satisfy equation (1.7). 
The symbol {W (x, y)}+ means that we take the polynomial part of the 
expression W (x, y). Moreover, the degree of F (x, y) with respect to y
does not exceed the number of distinct Puiseux series of the form (1.8)
satisfying equation (1.7) whenever the latter is finite.

Consequence. If neither Puiseux series in a neighborhood of the 
point x = ∞ satisfy equation (1.7) nor the functions of the form 
(1.9) constructed with the help of all possible combinations of 
admissible Puiseux series are polynomial, then invariant algebraic 
curves of vector X (if any) are of the form F (x). Here an admissi-
ble Puiseux series means that this series is of the form (1.8) and 
satisfies equation (1.7).

The inverse theorem is also valid.

Theorem 1.5. Suppose that y1(x), . . . , yN(x) are pairwise distinct 
Puiseux series in a neighborhood of the point x = ∞ that satisfy equa-
tion (1.7). Let the polynomial μ(x) ∈ C[x] be such that the following 
expression

F (x, y) = μ(x)
N∏

j=1

{
y − y j(x)

}
(1.10)

is an irreducible in C[x, y] polynomial, i.e. the non-polynomial part in 
(1.10) vanishes producing the polynomial F (x, y), then F (x, y) is an ir-
reducible invariant algebraic curve of the polynomial vector field X and 
related dynamical system (1.2).

Remark. Theorems 1.4 and 1.5 introduce a novel algebraic tool for 
finding all irreducible invariant algebraic curves explicitly. At the 
first step, one should obtain all the Puiseux series near the point 
x = ∞ that satisfy equation (1.7). At the second step, it is neces-
sary to consider different combinations of the Puiseux series and 
require that the non-polynomial part of expression (1.10) vanishes. 
Restrictions on the polynomial μ(x) (if any) can be found balanc-
ing higher-order terms (with respect to y) in equation (1.3).
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