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We report the results of a study of the dynamics of a two-state system coupled to an environment 
with peaked spectral density. An exact analytical expression for the bath correlation function is obtained. 
Validity range of various approximations to the correlation function for calculating the population 
difference of the system is discussed as function of tunneling splitting, oscillator frequency, coupling 
constant, damping rate and the temperature of the bath. An exact expression for the population 
difference, for a limited range of parameters, is derived.
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1. Introduction

The spin-boson model is one of the most prominent models 
used to study dissipative and decoherence effects in quantum me-
chanics [1,2]. It describes a two-state system (TSS) coupled to an 
infinite array of non-interacting harmonic oscillators whose effect 
on the system is characterized by spectral density J (ω). The spin-
boson model with a power law spectral density, which is the gen-
eral setting of the model, contains only the cutoff frequency of 
the bath as an internal energy scale and leads to scale-free-rates 
while the so-called structured environments provide a more non-
trivial internal dynamics which might be relevant for controlling 
coherence and relaxation times by engineering a properly struc-
tured environment [3]. Garg, Onuchic and Ambegaokar (GOA) have 
shown that the spin-boson model with Ohmic spectral density can 
be mapped to the problem of a TSS interacting with a harmonic 
oscillator which is damped by an Ohmic environment whose ef-
fective spectral function can be approximated as Lorentzian when 
the cutoff frequency of the Ohmic bath is much larger than the 
characteristic frequency of the harmonic oscillator [4]. The GOA 
model has been used in many studies to describe several phenom-
ena such as electron transfer reactions in various condensed phase 
environments. The same Hamiltonian and J (ω), also, describe ex-
perimentally relevant quantum systems, such as flux-qubit read 
out by a dc-SQUID [5–7], atom-based cavity quantum electrody-
namics [8], circuit quantum electrodynamics with superconducting 
systems [9], semiconducting quantum dots in nano-cavities [10]
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and in nano-mechanical resonators [11,12]. The same model is em-
ployed in chemical physics context to study charge transfer [13,14], 
energy transfer dynamics in photosynthesis [15–17] and linear and 
nonlinear spectroscopies [14].

Theoretical approaches used to investigate the dynamics of 
the coupled TSS-damped harmonic oscillator (HO) system can be, 
broadly, divided into two groups; on the one hand, the infinite 
dimensional TSS-HO Hamiltonian is approximated by a finite di-
mensional system which is reduced to Jaynes–Cummings or ac-
Stark Hamiltonian depending on whether one is in the resonant or 
dispersive regime [18]. On the other hand, the problem could be 
considered as a spin-boson model with a peaked spectral density. 
A large number of computational techniques have been developed 
to investigate the dynamics of spin-boson model, such as hierar-
chical equations of motion, renormalization group techniques and 
path integral based formalism [13,16,19–22]. The effects of struc-
tured spectral density on the decoherence properties of a qubit 
have been studied with a perturbative approach in Refs. [23,24]. 
Thorwart et al. have used ab initio QUAPI technique to show that 
perturbative treatment breaks down when qubit-HO coupling is 
strong (g � �) and when the qubit and the oscillator frequen-
cies are comparable [25]. Gan, Huang and Zheng have studied the 
dynamics of the spin-boson model by using a unitary transforma-
tion method [26] while Ref. [20] has investigated the dephasing 
times for the TSS-HO system by using flow-equations renormaliza-
tion method and shown that harmonic oscillator frequency can be 
used to control qubit dynamics.

As the interaction between the TSS and its environment, 
whether a bath of non-interacting harmonic oscillator or the 
damped harmonic oscillator, is considered to be linear, the spec-
tral density function J (ω) and the bath temperature completely 
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characterizes the TSS-bath coupling. All relevant computational 
techniques make use of bath correlation function G(t) which is the 
thermal average of the force auto-correlation of the bath degrees 
of freedoms or its two-times integrated form to account for the ef-
fect of the bath. So, obtaining manageable analytical expressions 
for G(t) might be beneficial for theoretical as well as computa-
tional techniques used to treat the spin-boson problem. There has 
been a number of reports on the analytical expressions for corre-
lation functions of peaked spectral density [4,27–29]. Nesi, Grifoni 
and Paladino have studied the dynamics of the system for the large 
Q-factor oscillator at arbitrary detuning and finite temperatures 
and obtained analytical expressions for the TSS population [28] for 
the weak-coupling regime. Building on the findings of Ref. [28], 
Vierheilig, Bercioux and Grifoni have considered the dynamics of 
a qubit coupled to a nonlinear oscillator which is coupled to an 
Ohmic bath and showed that the system can be mapped to the 
TSS-damped harmonic oscillator model with an effective peaked 
spectral density [29].

In the present study, our first aim is to obtain an exact analyt-
ical expression for the correlation function G(t) of TSS-HO system 
which is characterized by a peaked spectral density. The TSS-HO 
system has several characteristic times set by the energy splitting 
and tunneling amplitude of the TSS, frequency and the damping 
of the harmonic oscillator, the temperature of the HOs environ-
ment and the coupling constant between the HO and the TSS. The 
complicated interplay among these rate constants make it difficult 
to develop a universal computational technique which is applica-
ble for all parameter values. Using the derived G(t) expression, we 
investigate the population dynamics of the TSS and map the va-
lidity range of various approximations as function of TSS tunneling 
splitting, coupling strength between the TSS and the harmonic os-
cillator, damping of the oscillator and the temperature of the bath. 
It is found that for a range of parameters, one can use Markov 
approximation and obtain an exact expression for the population 
difference.

The outline of the paper is follows: In Section 2, we describe 
the problem and derive the expression for G(t) and present sev-
eral approximations to it. The validity range of the approximations 
is discussed in Section 3 and a brief summary of the study is pre-
sented in the conclusions.

2. The model

Let the total Hamiltonian of the closed system be

H = ε0

2
σz + V

2
σx +

∑
k

ωkb†
kbk + σz

∑
k

gk

(
b†

k + bk

)
, (1)

where ε0 is the splitting of the energy levels of the system, V is 
the tunneling matrix element and σi are the Pauli spin matrices. 
The bath is modeled as a collection of harmonic oscillators with 
creation (annihilation) operators b†

k (bk) and the mode frequency 
ωk . The dynamics of the two-state system are characterized by 
the population difference P (t) which is defined as the expecta-
tion value of σz as P (t) = TrTSS

[
σzTrB

(
e−iHtρ(0)eiHt

)]
. Here, ρ(0)

is the initial density matrix of the total system which is assumed 
to be in factorized form ρ(0) = ρTSS(0) ⊗ exp (−βHB) /Z and the 
two partial trace operations refer to trace over the bath (B) and 
system (TSS) degrees of freedom. P (t) for the spin-boson problem 
obeys the generalized master equation [1]:

dP (t)

dt
= −

t∫
0

dt′ (K s(t, t′)P (t′) + K a(t, t′)
)
, (2)

where K a(t, t′) and K s(t, t′) are the asymmetric and symmetric 
parts of the kernel, respectively. They are derived from the two-
time integrated bath correlation function G(t)

G(t) =
t∫

0

dt1

t1∫
0

dt2 〈F (t2)F (0)〉T + iErt, (3)

and can be represented as a series in tunneling amplitude V . In 
Eq. (3), Er is the reorganization energy of the bath and 〈F (t)F (0)〉T

is the thermal average of the force auto-correlation function of the 
bath modes which is defined as:

〈F (t)F (0)〉T = 1

2π

∞∫
0

J (ω)
cosh (ω/2kB T − iωt)

sinh (ω/2kB T )
dω. (4)

The effect of the environment on the system is characterized by 
bath spectral function J (ω), which we assume to be of the form

J (ω) = 8κ2 γ ω0 ω(
ω2 − ω2

0

)2 + 4γ 2ω2
, (5)

for the present study. J (ω) in Eq. (5) is a structured spectral func-
tion and can be used to describe various types of environments, 
such as the traditional spin-boson model with an Ohmic environ-
ment [4], a TSS coupled to a nonlinear, damped-oscillator [29], or 
an environment that contains both a background vibrations and 
one prominent vibrational mode. Depending on the model it de-
scribes, its parameters (ω0, κ , and γ ) would have slightly different 
meanings. Here, we have a two-state system in contact with a 
harmonic oscillator which damped by an Ohmic thermal bath in 
mind. So, ω0 is the frequency of the central harmonic oscillator, 
κ is the TSS-HO coupling constant, γ is the broadening of the os-
cillator levels due to its interaction with the Ohmic environment. 
One should note that J (ω) of Eq. (5) reduces to so called Debye 
form in the over-damped limit ω0 	 γ /2.

The reorganization energy Er is defined as

Er = 1

2π

∞∫
0

J (ω)

ω
dω, (6)

and is equal to κ2/ω0 for the spectral density given in Eq. (5). 
The bath correlation function G(t) can be simplified for the strong 
coupling regime κ � ω0, where one can invoke the short-time ap-
proximation by noting that the kernel function G(t) is non-zero 
only for a very short time and obtain [4]:

Gst(t) =
〈
F (0)2

〉
t2 + i Er t, (7)

where 
〈
F (0)2

〉
can be evaluated from Eq. (3) by using Eq. (5) as

〈
F (0)2

〉
= 2

Er

β
+ 1

π

Erω
2
0

�
Im

[
ψ

(
1 + iβ̃(� − iγ )

)]
, (8)

where � =
√

ω2
0 − γ 2, β̃ = β/(2π) = 1/(2πkB T ) is the inverse 

temperature scaled by 1/(2π) and ψ(z) is the complex di-gamma 
function. To evaluate G(t) for the general case, we write the force 
auto-correlation function as:

〈F (t)F (0)〉T = 1

2π

∞∫
0

J (ω) (coth (βω/2) cos (ω t)

−i sin (ω t)) dω. (9)

One should note that the auto-correlation function is the difference 
of the Fourier cosine and sine transforms of J (ω) coth (βω/2) and 
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