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In this paper, we investigate the propagation properties of four-petal Gaussian vortex (FPGV) beams prop-
agating through the quadratic index medium, obtaining the analytical expression of FPGV beams. The 
effects of beam order n, topological charge m and beam waist ω0 are investigated. Results show that 
quadratic index medium support periodic distributions of FPGV beams. A hollow optical wall or an opti-
cal central principal maximum surrounded by symmetrical sidelobes will occur at the center of a period. 
At length, they will evolve into four petals structure, exactly same as the intensity distributions at source 
plane.

© 2018 Published by Elsevier B.V.

1. Introduction

During the past several decades, emerged insight into practi-
cal applications of free space optical communications and optical 
trapping has culminated in the concept of the vortex beams [1–5]. 
There have been reports that vortex beams could not only give rise 
to angular momentum around the propagation direction [6], but 
also possess polarization properties which correspond to the spe-
cific point on a higher-order Poincaré sphere [7]. So far, a variety 
of vortex beams have been studied theoretically or experimentally, 
such as Laguerre–Gaussian vortex beams [8,9], Airy–Gaussian vor-
tex beams [10], Gaussian Schell-model vortex beams [11,12], and 
anomalous vortex beams etc. [13,14].

Very recently, a new kind of vortex beams called four-petal 
Gaussian vortex beams have attracted much interest. Lina Guo et 
al. investigated the propagating properties of FPGV beams propa-
gating through a paraxial ABCD optical system [15]. It is demon-
strated that spiraling wavefronts of the FPGV beams can modulate 
the beam profiles and carry on the orbital angular momentum. 
Moreover, Dajun Liu et al. studied the average intensities of FPGV 
beams propagating through the turbulence atmosphere [16]. Re-
sults show that FPGV beams maintain their four-petal profiles near 
the source plane and evolve into Gaussian-like structure in the far 
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field. Also the research has been extended to the partially coherent 
case. The characteristics of the partially coherent four-petal Gaus-
sian vortex beams in uniaxial crystals and turbulence atmosphere 
are studied [17,18].

As an ideal media for long-distance optical transmission, 
quadratic index medium has been widely studied to implement 
graded index waveguides, fibers and lenses [19–22]. To the best of 
our knowledge, there has been no report about the properties of 
FPGV beams propagating through the quadratic index medium. In 
this paper, we derive the analytical expression of FPGV beams in 
the quadratic index medium by using the Collins integral formula. 
Based on the Split Step Beam Propagation Method, propagation 
characteristics of FPGV beams are investigated. Results show that 
inhomogeneity has profound effects on the propagation dynamics 
of FPGV beams. They could support periodic intensity distributions 
of FPGV beams. At the source plane, they have the four petals 
structure. A hollow optical wall structure or a central principal 
maximum surrounded by symmetrical sidelobes will occur at the 
half of a periodic distance. Eventually, they will evolve into the 
four petals structure at a periodic distance, which is exactly the 
same as the intensity distributions at source plane.

2. Theoretical model

2.1. Four-petal Gaussian vortex beam

At the source plane, the electric fields of the FPGV beam can be 
expressed as:

https://doi.org/10.1016/j.physleta.2018.03.005
0375-9601/© 2018 Published by Elsevier B.V.

https://doi.org/10.1016/j.physleta.2018.03.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:lixiaohui@snnu.edu.cn
mailto:hrzheng@snnu.edu.cn
https://doi.org/10.1016/j.physleta.2018.03.005


JID:PLA AID:24989 /SCO Doctopic: Optical physics [m5G; v1.233; Prn:13/03/2018; 15:10] P.2 (1-5)

2 D. Zou et al. / Physics Letters A ••• (••••) •••–•••

Fig. 1. Normalized intensity distributions (a) and phase distributions (b) of a FPGV 
beam with n = 3, m = 3 at the source plane. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)
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where ω0 is the beam waist, n represents beam order and m is 
the topological charge of spiral phase plate. Equation (1) will be 
reduced to a common Gaussian beam if the beam order n and 
topological charge m is set to be n = 0, m = 0. Fig. 1 shows the nor-
malized intensity distributions and phase distributions of a FPGV 
beam at the source plane. We can see that FPGV beam has four 
equal petals with the equal intervals. The equiphase contours take 
on threefold diverging rays and the number of contours is equal 
to the topological charges m exactly. It has been reported that 
not only the shape, but also the space of the four petals varies 
with the beam order n and topological charge m, which is dif-
ferent from the properties of four-petal Gaussian beams without 
vortex [15]. Accordingly, we can control the initial incident beam 
intensity distributions by choosing reasonable beam order n or 
topological charge m.

2.2. Mathematical formulation

For quadratic index medium, the intensity dependent refrac-
tive index varies as n(r) = n0(1 − a2r2/2). n0 is the refractive 
index along the spatial axis and a describes measurement of the 
parabolic dependence of the index n(r) [19]. It represents isotropic 
case when a = 0. While it corresponds to a medium with weakly 
inhomogeneity when 0 < a2 � 1/2, namely, the change in the re-
fractive index can be neglected within a wavelength.

Considering optical field E(r, z, t) = ψ(r, z) exp(iωt), where ω
is the circular frequency and k = n0ω/c the wave number. The 
paraxial wave equation of the slowly varying envelope ψ(r, z) in 
quadratic index medium can be expressed as follows [23]:

2ik
∂ψ(r⊥, z)

∂z
+ ∇2⊥ψ(r⊥, z) − k2a2r2ψ(r⊥, z) = 0, (2)

where ∇⊥ = ∂2/∂x2 + ∂2/∂ y2 is the two dimensional transverse 
Laplacian operator. Based on the ABCD optical transformation ma-
trix methods, the mathematical expression of FPGV beams prop-
agating through the quadratic index medium can be derived. The 
transformation matrix of the quadratic index medium is expressed 
as follows [24]:
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Within the framework of the paraxial approximation, FPGV 
beams passing through the quadratic index medium obey well 
known Collins integral formula [25]:
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where En(x0, y0, 0) and En(x, y, z) correspond to the input electric 
fields and output electric fields, respectively. Recalling the follow-
ing integral formulas [26]:
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By substituting Eqs. (1), (5), and (6) into Eq. (4) and carrying on 
some tedious calculations, the approximate analytical expression of 
the FPGV beams passing through the quadratic index medium can 
be obtained as follows:
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where p = 1
ω2

0
+ ikA

2B , qx0 = ikx
2B , qy0 = iky

2B are the auxiliary parame-

ters.

3. Simulation and discussion

In this section, we investigate the evolution behavior of FPGV 
beams in quadratic index medium by using the Split Step Beam 
Propagation Method, in which diffraction and inhomogeneous ef-
fects can be treated independent of each other. The parameters 
of the FPGV beam are set to be λ = 0.63 μm, ω0 = 1.0 mm. Nu-
merical results are given to illustrate the influences of the beam 
order n, topological charge m and beam waist ω0. For convenience, 
the intensity distributions of the beam have been normalized at ar-
bitrary propagating distance z.

Fig. 2 shows the evolution behavior of a FPGV beam at different 
propagation z with n = 3, m = 3. It shows that although quadratic 
index medium cannot support FPGV beams as stationary solitons, 
it can keep them in periodical intensity distributions. The self-
repeating modulation periodic distance is given by zm = πn0/

√
n2, 

in which n0 = 1.5 and n2 = 0.01 m−2 correspond to the linear and 
nonlinear refractive coefficient, respectively [27]. We select a pe-
riod as z/zm = 0, 0.3, 0.5, 0.7, and 1. It can be seen that in the 
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