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We investigate the energetic and dynamical instability of spin–orbit coupled Bose–Einstein condensate 
in a deep optical lattice via a tight-binding model. The stability phase diagram is completely revealed 
in full parameter space, while the dependence of superfluidity on the dispersion relation is illustrated 
explicitly. In the absence of spin–orbit coupling, the superfluidity only exists in the center of the Brillouin 
zone. However, the combination of spin–orbit coupling, Zeeman field, nonlinearity and optical lattice 
potential can modify the dispersion relation of the system, and change the position of Brillouin zone for 
generating the superfluidity. Thus, the superfluidity can appear in either the center or the other position 
of the Brillouin zone. Namely, in the center of the Brillouin zone, the system is either superfluid or 
Landau unstable, which depends on the momentum of the lowest energy. Therefore, the superfluidity 
can occur at optional position of the Brillouin zone by elaborating spin–orbit coupling, Zeeman splitting, 
nonlinearity and optical lattice potential. For the linear case, the system is always dynamically stable, 
however, the nonlinearity can induce the dynamical instability, and also expand the superfluid region. 
These predicted results can provide a theoretical evidence for exploring the superfluidity of the system 
experimentally.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The optical lattice created by interference of two laser beams 
has provided an ideal platform for the manipulation of quantum 
atomic gases owing to its high controllability [1–3]. It has induced 
to an explosion of research both in theories [4–11] and exper-
iments [12–14], where some interesting phenomena have been 
discovered, such as Bloch oscillations [6], Landau–Zener tunnel-
ing [7,8], Josephson effect [12], energetic and dynamical instability 
[9,13], and superfluidity [10,11,14], etc. The Bloch state and the 
corresponding quasienergy have provided the basic concept and 
language for understanding the periodic systems [15,16]. In the 
optical lattice, the superfluidity of Bose–Einstein condensate (BEC) 
can be regarded as a Bloch wave [17,18]. As well known, the en-
ergetic criterion [19] results in a critical speed, beyond which the 
superfluidity becomes unstable against perturbation, then the Lan-
dau instability occurs. In a linear system, the BEC in the optical 
lattice is always dynamically stable, nevertheless the nonlinearity 
can generate the dynamical instability, and also expand the su-
perfluid region. The nonlinearity can also modify the dispersion 
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relation, and induce a loop structure in the energy band [17]. The 
investigation of nonlinear phenomena [20,21] in BEC has attracted 
more and more attentions in theory and experiment, which is also 
closely related to the stability of system.

Recently, the realization of BEC with spin–orbit coupling (SOC) 
in the optical lattice [22] has opened a completely new avenue 
for exploring superfluidity, and motivated the interesting of inves-
tigating the physics of the SOC in the optical lattice [23–26]. In 
absence of SOC, there is a minimum of the lowest energy band 
at the center of the Brillouin zone and a maximum at the edge 
[17,18]. However, the SOC can modify the dispersion relation, and 
generate a center peak of the lowest energy band at the center of 
the Brillouin zone, thus an isolated flat band can be presented in 
a certain parameter region [27], which has been observed experi-
mentally [28]. The combination of SOC and optical lattice has also 
resulted in the predictions and discoveries of topological insulators, 
superfluidity and dynamical instability. However, the exploring for 
the energetic and dynamical instability of BEC with the combi-
nation of SOC and nonlinearity in a deep optical lattice is still 
missing. The tight-binding model [29,30] including the SOC and 
nonlinearity has made it possible to explore the physics of SOC in 
the deep optical lattice.

In this paper, the dependence of energetic and dynamical insta-
bility on the combination of SOC, Zeeman splitting and nonlinear-
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ity is revealed in a deep optical lattice, while the complete stability 
phase diagram is presented in full parameter space. Furthermore, 
the mechanism for generating the superfluidity is explicitly illus-
trated, which depends on the dispersion relation of the system. 
It is well known that the superfluidity occurs when the momen-
tum of condensate is not beyond the critical value, i.e., the center 
of the Brillouin zone, otherwise the system is energetically unsta-
ble, i.e., Landau instability arises. However, the coupling effects of 
SOC, Zeeman splitting, nonlinearity and optical lattice potential can 
modify the dispersion relation of the system, and generate a tran-
sition between zero momentum state and non-zero momentum 
state, which results in the superfluidity appearing in the region 
either around or deviated from the center of the Brillouin zone. 
Namely, these coupling effects can make the superfluidity occur at 
optional position of the Brillouin zone dependent on the momen-
tum of the minimum energy. In a linear system, the BEC is always 
dynamically stable. However, the nonlinearity can induce the dy-
namical instability, and also enhance the superfluid region. This 
can be used to manipulate the energetic and dynamical instability 
in experiment.

2. Model

We consider a BEC with equal contributions of Rashba and 
Dresselhaus SOC loaded into a deep one-dimensional optical lat-
tice, which has been realized in experiment [22] recently. For suf-
ficiently deep lattice, the system can be regarded as a chain of 
separately trapped BEC that are weakly linked. Thus the tight-
binding approximation is appropriate and applicable. By using the 
tight-binding approximation, with the mean-field frame, the sta-
bility of BEC with SOC in optical lattice can be described by the 
following dimensionless equations [22,27,29–32]

i
dψσn

dt
= − �(ψσn+1 + ψσn−1) + i

kL

2
(ψσ̄n+1 − ψσ̄n−1)

± δψσn + (γ |ψσn|2 + β|ψσ̄n|2)ψσn

(1)

where ψσn (ψσ̄n) is the normalized wave function of BEC with 
spin σ (σ̄ ) in the nth site, and {σ , σ̄ } = {↑, ↓}, i.e., 

∑
σn |ψσn|2 = 1. 

� ≡ �n,n+1 = ∫
w∗(x − n)∂2 w(x − n − 1)/∂x2dx is the tunneling

constant with Wannier wave function w(x − n). kL ≡ kL(n,n+1) =
(4κ/kO L) 

∫
w∗(x − n)∂ w(x − n − 1)/∂xdx denotes the dimension-

less SOC strength with the optical lattice wave number kO L and 
the corresponding equal Rashba and Dresselhaus SOC strength κ . 
δ ≡ δ̄/ωR refers to dimensionless Zeeman splitting frequency, 
where δ̄ is defined by the detuning or by the external Zee-
man field, and ωR ≡ E R/h̄ ≡ h̄k2

O L/(2m) with the recoil energy 
E R and the atomic mass m. γ = (aσσ /a0) 

∫ |w(x − n)|4dx and 
β = (aσ σ̄ /a0) 

∫ |w(x −n)|4dx respectively represents dimensionless 
intra- and inter-species nonlinearity strength with the background 
scattering length a0 [31], and the two-body scattering lengths 
between intra- and interspecies aσσ and aσ σ̄ . The physical vari-
ables are rescaled as ψσn ∼ [ωR/(2ω⊥a0)]1/2ψσn , x ∼ k−1

O L x, and 
t ∼ ω−1

R t with the transversal frequency ω⊥ [29–32]. This tight-
binding model has already been widely used to detect the physics 
of BEC with SOC in a deep optical lattice, where composite local-
ized modes [29] and SOC-induced symmetry breaking of localized 
discrete matter waves [30] are discovered.

The stability analysis of BEC in the optical lattice can be per-
formed by using the Bogoliubov theory. Thus, the tight-binding 
Eq. (1) has a Bloch wave solution [9,10,18]

ψσn = [ψσ0 + uσ (t)eiqnπ + v∗
σ (t)e−iqnπ ]ei(knπ−μt), (2)

which results in a small perturbation above the ground state, 
where μ is the chemical potential of the system, ψσ0 is the ground 

state wave function, uσ (t) and v∗
σ (t) are the Bogoliubov quasi-

particle amplitudes, while k and q is the quasimomentum of the 
condensate and the quasiparticle excitation, respectively. The per-
turbation depends on the quasimomentum of the quasiparticle 
excitation and the site of the lattice, and it is a periodic pertur-
bation. In the experiment, the perturbation can be generated by 
a sudden displacement of the magnetic potential along the lat-
tice axis [14]. Substituting Eq. (2) into Eq. (1), one can obtain 
Bogoliubov–de Gennes equation

i
d

dt

⎛
⎜⎜⎝

u↑
u↓
v↑
v↓

⎞
⎟⎟⎠ = σ̂ Â

⎛
⎜⎜⎝

u↑
u↓
v↑
v↓

⎞
⎟⎟⎠ , (3)

where σ̂ =
(

1 0
0 −1

)
is the Pauli matrix and the matrix

Â =
(

U (k + q) W↑↓
W ∗↑↓ U (k − q)

)
, (4)

with

U (k) =
(

L↑(k) M↑(k)

M↓(k) L↓(k)

)
, (5)

and

Wσ σ̄ =
(

γ ψ2
σ0 βψσ0ψσ̄0

βψσ̄0ψσ0 γ ψ2
σ̄0

)
. (6)

Here Lσ (k) = −2� cos(kπ) ± δ + 2γ |ψσ0|2 + β|ψσ̄0|2 − μ and 
Mσ (k) = −kL sin(kπ) + βψσ0ψ

∗̄
σ0. The stability of the system can 

be obtained by examining the eigenvalues of the matrix Â and σ̂ Â. 
If the matrix Â is positive definite, the Bloch wave is an energy lo-
cal minimum which represents a superfluidity, then the system can 
be energetically stable. Otherwise, an energy saddle point arises 
when matrix Â exists one or more negative eigenvalues, which 
results in Landau instability, i.e., energetic instability. Thus, the 
boundary of energetic instability is defined by min(ε) = 0, where 
ε is the eigenvalues of matrix Â. If the eigenvalues of the ma-
trix σ̂ Â are all real numbers, the Bloch wave is dynamically stable, 
otherwise the dynamical instability appears for existing one or 
more imaginary eigenvalues, where the corresponding mode will 
grow exponentially in time, which can result in period doubling 
and other forms of spontaneous breaking of the periodicity of the 
system [9,10,14]. Namely, the border of dynamical instability is 
defined by max{abs[Im(λ)]} = 0, where λ is the eigenvalues of 
matrix σ̂ Â. Further, Â and σ̂ Â are both 4 × 4 matrix, and their 
eigenvalues can be directly obtained by the diagonalization of the 
matrix.

3. Dispersion relation

The dispersion relation of BEC in the lattice becomes complex 
owing to the coupling effects of SOC, Zeeman splitting, nonlin-
earity and optical lattice potential, thus it can not be obtained 
analytically, but can be described numerically. However, the dis-
persion relation can be acquired analytically for a linear system or 
in absence of the Zeeman splitting.

For linear case, i.e., γ = β = 0, the dispersion relation for the 
lowest energy band is depicted as

μ = −2� cos(kπ) −
√

δ2 + k2
L sin2(kπ), (7)

with k varying in the first Brillouin zone k ∈ [−1, 1]. There is 
a critical Zeeman splitting value δc = k2

L/(2�) that for δ < δc , 
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