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A generalized entropy arising in the context of superstatistics is applied to an ideal gas. The curvature 
scalar associated to the thermodynamic space generated by this modified entropy is calculated using 
two formalisms of the geometric approach to thermodynamics. By means of the curvature/interaction 
hypothesis of the geometric approach to thermodynamic geometry it is found that as a consequence of 
considering a generalized statistics, an effective interaction arises but the interaction is not enough to 
generate a phase transition. This generalized entropy seems to be relevant in confinement or in systems 
with not so many degrees of freedom, so it could be interesting to use such entropies to characterize the 
thermodynamics of small systems.

© 2018 Published by Elsevier B.V.

1. Introduction

Because of the existence of anomalous systems which do not 
seem to obey the rules of common statistics generally associated 
to non-equilibrium processes, a more general statistics has been 
proposed [1] based on superstatistics [3,2] which considers large 
fluctuations of intensive quantities [2]. We review here this formu-
lation in which the intensive fluctuating quantity is the tempera-
ture. This fluctuation gives rise to a certain probability distribution 
characterized by a generalized Boltzmann factor. We can, in prin-
ciple, associate an entropy for every probability distribution and 
in this context the Boltzmann–Gibbs entropy corresponds to the 
usual Boltzmann factor. It is, however, possible to obtain other 
generalized expressions for entropies associated to different prob-
ability distributions [4] depending on one or several parameters 
[3,5]. In [1,5], it was shown how to generate an entropy depend-
ing only on the probability. The particular entropy considered here 
arises from a generalized gamma distribution depending only on 
the probability pl . This entropy has several interesting features and 
it seems to be relevant for particular thermodynamic systems like 
confined systems [6] and in this context we find an interesting and 
necessary application of such generalized entropies. The quantum 
version of this entropy which is a generalization of the Von Neu-
mann entropy arises by means of a natural generalization of the 
replica trick [7–9].

In the formalism of the geometric approach to thermodynamics, 
a geometric structure is given for usual thermodynamic systems 
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by means of Riemannian geometry [10–12,15,13,14]. Particularly in 
the context of the so called geometrothermodynamics [15,14], the 
geometrical relevant quantities, like the thermodynamic metric, 
are invariant with respect to Legendre transformations resembling 
the fact that the thermodynamic information does not depend on 
what fundamental relation (thermodynamic potential) is used. In 
this formalism, the representation invariance of the metric and its 
corresponding curvature scalar has been proved for simple thermo-
dynamic systems [14]. On the other hand, inspired in fluctuation 
theory, a distance between points in a thermodynamic space can 
also be defined [11,12,16], and we can associate to this space a 
thermodynamic metric, a corresponding Riemann tensor and con-
sequently a curvature scalar R . Both approaches coincide in the 
physical interpretation of the curvature scalar as a manifestation 
of the existence of intermolecular interactions. When the curvature 
associated to the corespondent thermodynamic metric is non-zero, 
an interaction of some nature is present [12,13], this is known as 
the curvature/interaction hypothesis. Other physical aspects that 
the scalar reveals, which has been proven for several thermody-
namic systems, is the existence of first order phase transitions. 
The curvature scalar diverges at some point if a phase transition 
exists. For some systems, the point where the scalar diverges hap-
pens to be the critical point where the phase transition occurs [16,
14]. In the thermodynamic geometry of fluctuation theory, the sign 
of the curvature scalar also provides additional information. For 
some systems it is clear that the sign of R represents the kind 
of interaction, being attractive for a negative scalar and repulsive 
for a positive scalar [17]. The sign of R can also be associated to 
the bosonic or fermionic nature of the thermodynamic system, the 
Bose and Fermi ideal gases are a clear example of this, we have 
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R < 0 in the first case and R > 0 in the second case [18,22]. For 
some other systems, it appears a change of sign in the curvature 
scalar, from negative to positive or the other way around. These 
cases generally appear where a different statistics, other than that 
of Boltzmann’s, is considered [17,22]. Following the vast literature 
of the subject related to the thermodynamic geometry of the two 
approaches considered here, we find that the sign interpretation 
is more clear in the formalism of G. Ruppeiner [17] but even so, 
it is not at all clear that this interpretation could be valid for all 
thermodynamic systems.

In this work we particularly consider the curvature of a non-
extensive ideal gas characterized by a generalized non-extensive 
entropy. The particular entropy we use depends only on the prob-
ability distribution and arises in the realm of superstatistics [1,6]. 
In order to get a better insight of the physics behind the curva-
ture scalar of our thermodynamic system, we calculate the curva-
ture scalar using the two formalisms mentioned earlier, we will 
call these two scalars, the geometrothermodynamic scalar for the 
scalar calculated following the formalism in [13] and the fluctua-
tion theory scalar, to the scalar calculated following [17]. We will 
find that the particular entropy (statistics) we propose [1,6] mod-
ifies the geometric structure of the generalized thermodynamic 
space considered, namely a generalized ideal gas, giving rise to the 
appearance of an effective interaction.

The paper is organized as follows: First in section 2 we ex-
plain how our modified entropy, and its associated Boltzmann 
factor, arises by assuming a particular probability distribution. In 
section 3 we briefly introduce first the formalism of geometrother-
modynamics developed by H. Quevedo [13] and describe how the 
thermodynamic metric is calculated. In this same section we also 
introduce the thermodynamic metric in the formalism of G. Rup-
peiner [12]. We calculate the curvature scalar in both formalisms 
to further analyze and compare the thermodynamic information 
contained in the scalars using the interpretation of both for-
malisms. In section 4 we discuss the interpretation of both scalars 
and in section 5 we conclude and present the main results of our 
work.

2. Generalized entropies depending only on the probability 
distribution

The Boltzmann factor depending on the energy E of a mi-
crostate associated with a local cell of average temperature 1/β

is given by

B(E) =
�

f (β)e−βEdβ (1)

and different distributions f (β) lead to different Boltzmann fac-
tors. Following the procedure stated in [2,4] it is possible, in prin-
ciple, to associate a modified entropy to every Boltzmann factor. As 
an example we have that for the distribution f (β) = δ(β − β0) the 
usual Boltzmann factor is recovered and from this, the Boltzmann–
Gibbs entropy follows directly [4]. In [1] a Gamma distribution of 
the form

f pl (β) = 1

β0 pl�
�

1
pl

�
�

β

β0

1

pl

� 1−pl
pl

e−β/β0 pl , (2)

was proposed where, by maximizing the appropriate information 
measure, the parameter pl can be identified with the probability 
and β0 is the average inverse temperature. This distribution yields 
to the Boltzmann factor

B pl (E) = (1 + plβ0 E)
− 1

pl , (3)

that leads to the following generalized entropy [1]

S = k
��

l=1

(1 − ppl
l ). (4)

It has been observed that when the fluctuations are small, the 
Boltzmann factor (3) can be approximated as an infinite sum 
where the first term is the usual Boltzmann factor and the first 
correction term seems to be the same even for different statistics 
[2]. It was shown in [21,19] that this is the case for the entropy 
in Eq. (4). We will further consider small fluctuations and we will 
take only the first correction term in entropy. Associated to this 
generalized entropy there is a generalized H function,

H =
�

d3 p
�

e f ln f − 1
�

, (5)

it can be shown that it satisfies a generalized H-theorem [19]. Us-
ing a Maxwell distribution to calculate this new H function, keep-
ing only the first order correction and the relation H = −S/kV , it 
follows

Sef f = −kN

�
ln (nλ3) − 3

2

	
(6)

− kV n2λ3

25/2

�
ln2 (nλ3) − 3

2
ln (nλ3) + 15

16

	
,

where λ = h√
2πmkT

can be identified with the mean thermal wave-

lenght, k is the Boltzmann constant, V is the volume and T is the 
absolute temperature. The authors in [19] studied the thermody-
namic properties of the corresponding generalized ideal gas. In this 
context, analysis of response functions shows a first correction hav-
ing a universal form, that is, the same functional correction to all 
thermodynamic quantities derived from the generalized equations 
of state.

In order to obtain a thermodynamic potential, we assume that 
the conventional linear relation between internal energy and tem-
perature holds. Within this approximation we obtain the following 
thermodynamic fundamental relation

S = kN ln v + 3kN

2
ln

u

b
+ 3kN

2
(7)

− kN

25/2

b3/2

u3/2 v

�
ln2

�
b3/2

vu3/2

�
− 3

2
ln

�
b3/2

vu3/2

�
+ 15

16

	
,

where u = U
N , v = V

N and b = 3h2

4πm . The first terms correspond to 
the usual entropy of the ideal gas, S = kN ln v + 3kN

2 ln u
b + 3kN

2 . 
We notice that the Sackur–Tetrode expression for the entropy of 
the ideal gas S = kN ln v + 3kN

2 ln u
b + 5kN

2 can be recovered by an 
ad-hoc fixing term as it was originally proposed by Gibbs. It is not 
possible to recover the 5kN/2 term from the classical calculation 
we made but this does not affect the further analysis which in-
volves derivatives of the entropy, and this constant term does not 
affect the final result. At this point we have to clarify that the lin-
ear relation between internal energy and temperature that we have 
assumed makes our calculations to be more accurate for low den-
sities or high temperatures and we will take this into account to 
make the interpretation of the behavior of the curvature scalars.

A previous thermodynamic analysis was made corresponding to 
a system characterized by a particular interaction. In [19] a sys-
tem was considered of gas particles exposed to square-well and 
Lennard–Jonnes potentials. These potentials are well defined and 
a respective Boltzmann factor B(E) = f (β, E, pl) can be associated 
to these systems. A further analysis with Monte Carlo simulations 
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