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Torsion balances have good immunity to tilt and low rotational stiffness. However precise control of the 
position of the suspended torsion ‘bob’ is difficult in the presence of ground vibrations and tilt and this 
is a limiting factor in applications where Casimir forces or putative non-Newtonian short-range forces are 
being measured. We describe how the desirable characteristics of torsion balances can be reproduced in 
a rigid body that is suspended using applied forces rather than a torsion fibre. The suspension system can 
then provide a more precise control of the degrees of freedom of the suspended body. We apply these 
ideas to a superconducting levitated torsion balance, developed by the authors, and a generic electrostatic 
suspension. We present results of preliminary experiments that provide support for our analyses.
© 2018 University of Birmingham. Published by Elsevier B.V. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The torsion balance has been the work-horse of many areas of 
physics and engineering since the time of Cavendish [3,5]. The 
advantages associated with a state of the art Cavendish torsion 
balance are well understood and appreciated: measurements of 
torques can be made without the influence of Earth’s gravity; fi-
bres can be easily manufactured that give very small torsional 
stiffness and this minimises the problem of noise associated with 
the sensor that detects the rotational motion; finally torsion bal-
ances can be made so that, to a good approximation, horizontal 
acceleration or tilt of the laboratory does not couple to their ro-
tation. As a result of these attributes the torsion balance has been 
used with great success to test the principle of weak equivalence 
and the inverse square law of gravitation [15]. However the classic 
torsion balance does have its drawbacks: its dynamics are complex 
as the suspended object (the bob) is essentially suspended as a 
simple pendulum that can swing in the presence of ground vibra-
tions that accelerate the attachment point of the fibre. This makes 
the precise control of the linear displacements of the bob difficult. 
Ground tilt in a typical laboratory is of the order of a few μrad 
and the displacement of the bob attached to the end of a fibre of a 
few 10’s of cm in length can make measurements of forces whose 
range is less than a few μm problematic [10]. There is residual tilt 
coupling due to the asymmetry of the fibre and, therefore, most 
torsion balances convert ground tilt into rotation about the torsion 
balance fibre axis [13,1]. The question arises as to whether there 
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could be devices that can equal the performance of the Cavendish 
balance in terms of their signal to noise for torque measurement, 
have low sensitivity to ground tilt, but have more controllable dy-
namics. Many attempts have been made at dispensing with the 
standard torsion fibre. For example there have been: superconduct-
ing gradiometers [4] and torsion balances [6]; room temperature 
magnetic suspensions [9]; fluid suspensions [8] and electrostatic 
suspensions [16]. Nevertheless our knowledge of weak forces with 
ranges larger than about 50 μm is still dominated by a device that 
was devised more than 200 years ago.

The goal of the work described here picks up from the instru-
ment developments of reference [6] and [16] (see also [7]) where 
the fibre is absent. We refer to these devices as torsion balances 
with ‘fibres of zero length’. We aim to realise post-Cavendish tor-
sion balances that have simple dynamics such that surfaces, that 
provide the source and test bodies for short range forces, can be 
accurately maintained in close proximity but still have the desir-
able properties of the Cavendish torsion balance. Such a devel-
opment would potentially allow more accurate measurement of 
forces of shorter range than 50 μm and provide a more sensitive 
device than atomic force microscopes (see [11]) that are currently 
commonly used in this regime.

We present a scheme for tuning the dynamics of a suspended 
object in order to decouple its rotational motion from translational 
accelerations and also to tune one or more of its rotational modes 
to give a low stiffness. We will consider a general case of a me-
chanically rigid object (i.e. with no internal degrees of freedom) 
suspended by some combination of actuators relative to some rigid 
structure. The actuators provide forces and stiffnesses and could be 
magnetic, electrostatic, air pressure actuators, mechanical springs, 
or some combination thereof. The forces provided by the actuators 
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could individually be attractive or repulsive and their equivalent 
springs could produce a stability or instability in the suspended 
object. However, the forces and their stiffnesses have to be tun-
able. Clearly, if the force provided by an actuator is either attractive 
or repulsive, it will not by itself produce an equilibrium position, 
either stable or unstable. Two such actuators acting in opposition 
can produce a stable equilibrium if the second derivative of the 
potential energy with respect to a particular degree of freedom 
is positive for both springs, and an unstable one if the second 
derivatives are both negative. We will specifically address the cases 
of superconducting diamagnetic and electrostatic suspensions. Dia-
magnetic superconducting suspensions can be used to suspend an 
object in a stable configuration. In this case, the equilibrium po-
sition will represent a minimum of the body’s potential energy in 
the six-dimensional space of translations and rotations. The mo-
tion, for sufficiently small deviations from the equilibrium position, 
should be well described by a combination of up to six harmonic 
oscillator modes. By Earnshaw’s theorem it is not possible to sta-
bly electrostatically suspend an object in three dimensions, but it 
may be in a stable configuration if it is mechanically constrained 
in one or more dimensions, and it may also be servo-controlled 
such that it is effectively stable below some frequency range that 
is characteristic of the servo system.

In the following article we analyse the general case of a levi-
tated rigid body that is constrained by some combination of ac-
tuators relative to some rigid external structure (attached to the 
Earth). We refer to the levitated object as the ‘float’, the actuators 
as ‘springs’ and the rigid structure as the ‘bearing’. We present a 
model for the potential energy in terms of generalised stiffnesses 
which constrain the float’s motion relative to the bearing. We show 
how the stiffnesses can be defined in order to allow one of the 
float’s rotational degrees of freedom to be decoupled from trans-
lational vibrations of the bearing. We also show, using the specific 
examples of an electrostatic suspension and a superconducting tor-
sion balance, how the stiffnesses can be modified to achieve a 
rotational degree of freedom of low stiffness.

2. Decoupling of translational forces from the rotational mode

The low flexural rigidity of the fibre suspension of a Cavendish 
torsion balance is such that the centre of mass of the suspended 
torsion bob lies to a high accuracy directly below the axis of ro-
tation of the balance. This means that a transverse acceleration of 
the laboratory (e.g. from seismic noise) acting on the suspended 
mass (bob) through its centre of mass (COM) will not produce a 
torque on the balance. In general, for an electromagnetically sus-
pended object, there will be some offset between the COM and the 
point through which the suspension forces act. This leads to a cou-
pling between translational and rotational modes. This situation is 
illustrated in Fig. 1.

In Fig. 1 an object, represented by the outer rectangle (but that 
can in principle be of an arbitrary shape), is shown in an arbitrary 
orientation being supported by an array of forces, with their as-
sociated stiffnesses acting at various points on the surface of the 
body. We can assume, for the sake of ease of conceptual under-
standing, that the figure is a plan view and that local gravity acts 
in a perpendicular direction to the page. A steady acceleration of 
the bearing in the plane of the page will produce a force, �Fc , act-
ing at the centre of mass of the float and a reaction force 

−→
Fb at 

a position that we will define as the centre of buoyancy of the 
float/bearing system. We have from Newton’s third law that

�Fc + �Fb = 0, (1)

and the net torque acting on the system is

� = �rb × �Fb + �rc × �Fc = ( �rc − �rb
) × �Fc. (2)

Fig. 1. A schematic diagram in two dimensions of a float (outer tilted rectangular 
object) that is suspended from a bearing using a combination of forces that are 
represented by springs in compression. A linear acceleration of the bearing creates 
forces Fc and Fb that act at the centre of mass of the float and centre of buoyancy 
of the bearing, respectively. If the centre of buoyancy is not located at the centre of 
mass of the float, a torque Γ is also produced. The labels for the coils are used in 
a discussion in Section 4.

We can equate the force acting on the float with the product of 
its mass, m f , and the acceleration, �̈r0, of the bearing. The coordi-
nates of the centre of buoyancy, �rb , and the centre of mass of the 
float, �rc , can be defined with respect to a coordinate system cen-
tred on the bearing. We notice that the centre of buoyancy is the 
point at which a force can be applied such that it only produces a 
displacement of the float and not a rotation. It follows that, if the 
centre of mass of the float coincided with the centre of buoyancy, 
the float would displace but not rotate. Tuning of the centre of 
mass position can be achieved by adjustment of the distribution of 
mass, as is the case in standard mechanical beam balances where 
an appropriate period of oscillation can be thus achieved, for ex-
ample. However here we explore the possibility of adjustment of 
the stiffnesses.

For a general positional configuration of the float, we can calcu-
late the potential energy, E , stored in the ensemble of suspension 
springs in terms of the linear and angular displacements of the 
float, �, with respect to the bearing as

E = 1

2
� · K · �, (3)

where K is the symmetric stiffness matrix,

K =

⎛
⎜⎜⎜⎜⎜⎝

Kξξ Kξη Kξς Kξθ Kξφ Kξψ

Kηη Kης Kηθ Kηφ Kηψ

Kςς Kςθ Kςφ Kςψ

Kθθ Kθφ Kθψ

Kφφ Kφψ

Kψψ

⎞
⎟⎟⎟⎟⎟⎠

, (4)

with � = (ξ,η,ς, θ,φ,ψ) which contains, respectively, the float’s 
spatial and angular displacements with respect to the bearing in 
a cartesian coordinate system. The components of the forces and 
torques, F , can be calculated using virtual work arguments in the 
usual way,

F = −K �. (5)

Initially we will concentrate on the equations of motion in a 
plane perpendicular to Earth’s gravity. With reference to equa-
tion (2), we can take moments about the centre of buoyancy and 
use subscripts to denote the cartesian components of torque and 
force,

Γz = ΔxF y − �yFx, (6)

where (�x,Δy) is the location of the centre of mass with respect 
to the centre of buoyancy.
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