
JID:PLA AID:24974 /SCO Doctopic: Quantum physics [m5G; v1.232; Prn:28/02/2018; 10:23] P.1 (1-7)

Physics Letters A ••• (••••) •••–•••

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Testing local-realism and macro-realism under generalized dichotomic 

measurements

Debarshi Das a, Shiladitya Mal b,∗, Dipankar Home a

a Centre for Astroparticle Physics and Space Science (CAPSS), Bose Institute, Block EN, Sector V, Salt Lake, Kolkata 700 091, India
b S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 September 2017
Received in revised form 17 February 2018
Accepted 20 February 2018
Available online xxxx
Communicated by M.G.A. Paris

Keywords:
Generalised measurement
Biased unsharp measurement
Leggett–Garg inequality
Macro-realism
Local-realism

Generalized quantum measurements with two outcomes are fully characterized by two real parameters, 
dubbed as sharpness parameter and biasedness parameter and they can be linked with different 
aspects of the experimental setup. It is known that sharpness parameter characterizes precision of 
the measurements and decreasing sharpness parameter of the measurements reduces the possibility of 
probing quantum features like quantum mechanical (QM) violation of local-realism (LR) or macro-realism 
(MR). Here we investigate the effect of biasedness together with that of sharpness of measurements and 
find a trade-off between those two parameters in the context of probing QM violations of LR and MR. 
Interestingly, we also find that the above mentioned trade-off is more robust in the latter case.

© 2018 Published by Elsevier B.V.

1. Introduction

Nonclassical features of quantum mechanics, for example, quan-
tum mechanical (QM) violations of local-realism (LR) [1,2] or 
macro-realism (MR) [3] are probed through performing incompat-
ible measurements on systems. Ideal measurements, also known 
as projective measurements, are described by a set of projectors 
acting on the system’s Hilbert space. This is also known as Von 
Neumann measurement after his seminal work formalising mea-
surement scheme in QM [4]. Later this concept is extended to 
positive operator valued measurement (POVM) and presently it de-
scribes the most general kind of quantum measurements. POVM 
has operational advantages in many tasks over projective mea-
surements, for example, distinguishing nonorthogonal states [5], 
demonstrating hidden nonlocality [6,7].

In POVM formalism two observables can be measured jointly 
even when they do not commute. It is well known [8] that the 
observables which can be measured jointly do not lead to the vio-
lations of Bell–CHSH (Bell–Clauser–Horne–Shimony–Holt) inequal-
ities [1,2]. Moreover for two dichotomic measurements, POVMs are 
not better than projective measurements in the context of QM vio-
lations of Bell–CHSH inequalities [9]. It was shown by considering 
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the implication of quantum entanglement to nonlocal game, which 
is a kind of cooperative game of incomplete information. Nonlo-
cal game can be described as follows: a referee, who determines 
the game, randomly chooses questions, drawn from finite sets ac-
cording to some fixed probability distribution and send them to 
two players (say, Alice and Bob) at distant locations. Alice and Bob 
respond to the referee with an answer without communicating 
themselves. The referee then evaluates some predicate based on 
the questions asked and their answers, to determine whether they 
win or lose. Alice and Bob can gain advantage in winning if they 
share quantum correlations instead of classical correlations [9].

Condition for joint measurability of two noncommuting observ-
ables was derived [10] and for two dichotomic observables it is 
fully characterized [11–13]. It is also shown that for particular two-
level observables the border of joint measurability coincides with 
the one for the violation of the Bell–CHSH inequality [14]. In [15] it 
has been shown that, for two non-jointly measurable observables 
at one side, there always exists state and projective measurements 
for the other side such that the violation of the CHSH inequality 
is enabled. This result was shown in [15] by casting joint mea-
surability, considering its implicit characterization, as a problem of 
semi-definite programme (SDP) [16].

Moving to the practical origin of POVM, it is known that they 
occur in quantum measurement formalism mainly due to two rea-
sons [17]. Firstly, POVM may account for the ever-present imper-
fections of any measurement and secondly, there are measurement 
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situations for which there exists no ideal background observable 
represented by a projective valued measurement (PVM). Examples 
of the second reason include genuine phase space observables, 
as the individual measurement outcomes are fuzzy phase space 
points in accordance with the Heisenberg uncertainty relation. Re-
garding the first reason it is known that in Von Neumann mea-
surement scheme there is a cut between classical and quantum 
domain where quantum systems are measured by classical appara-
tus. System variable to be measured becomes entangled with clas-
sical probe in the process of measurement interaction. By sharply 
distinguishing different probe states one can achieve PVM. In real-
ity, measurements are usually not PVM reflecting non-zero overlap 
between the probe states. For detail study one can see [17].

Dichotomic POVM are characterised by two real parameters 
dubbed as sharpness and biasedness [11,13]. These two parameters 
can be linked with different types of nonidealness, with respect 
to ideal projective measurement, involved in the real experimental 
scenario. Sharpness characterizes measurement precision which is 
related to the overlap between non-orthogonal probe states [19]. 
On the other hand, biasedness can be linked with the error in 
alignment of Stern–Gerlach (SG) apparatus or the deviation from 
the Gaussian nature of spatial wave-packet of incident spin- 1

2 par-
ticles which is recently shown by some of us [20]. Any physical 
system is described with respect to some reference frame. For ex-
ample, spin direction is defined with respect to some gyroscope in 
the laboratory instead of any purported absolute Newtonian space. 
Setting up SG apparatus requires a attached reference frame with 
respect to which the direction of inhomogeneous magnetic field, 
incident particle beam, position of screen are defined. Incident par-
ticle beam may not pass through the center of SG apparatus due 
to some alignment problem which reflects in the biasedness of 
POVM measured with such non-ideal device. In information pro-
cessing tasks communication between different observers without 
shared reference frame is an interesting area of research and for 
detailed study one can see [18]. These two quantities, therefore, 
have well defined physical interpretations beyond mathematical 
constructions.

It is known that decreasing the sharpness of measurements 
reduces the possibility of obtaining QM violations of Bell–CHSH 
inequality [21,22] or Leggett–Garg inequality (LGI) [23–25] and be-
low a certain value of the sharpness parameter, violations of these 
inequalities are not obtained. In the most general formulation of 
dichotomic measurements, as we have just mentioned, there is an-
other parameter, apart from sharpness parameter, which is known 
as biasedness parameter.

In this paper we explore the effect of biasedness of measure-
ments on probing quantumness in the context of QM violation of 
CHSH inequality as well as in the context of QM violations of three 
inequivalent necessary conditions for MR, namely LGI [3], Wigner’s 
form of the Leggett–Garg inequality (WLGI) [24] and the condition 
of no-signalling in time (NSIT) [26]. Inequivalence of these neces-
sary conditions of MR has been studied [27] and it was recently 
shown [28] that for a particular biased unsharp measurement 
there exists a state of two level system for which all these nec-
essary conditions of MR are violated for any non-zero value of the 
sharpness parameter. In another work [29] the effect of biasedness 
over that of unsharpness of multi-outcome spin measurements has 
been explored for multilevel spin systems considering a particular 
measurement scheme.

In case of spatial correlations we find out the effect of the 
biasedness parameter on the minimum value of the sharpness pa-
rameter over which the QM violation of CHSH inequality persists. 
Furthermore, we derive the necessary and sufficient condition for 
the violation of CHSH inequality with biased unsharp measure-
ments at one side and projective measurements at another side. 
As a corollary of this derivation we find out that the violation of 

the CHSH inequality cannot be enabled with dichotomic POVMs at 
one side if that is not enabled with projective measurements on 
both sides. This result is consistent with previous findings [9]. In 
case of temporal correlations we find out the effect of the biased-
ness parameter on the minimum values of the sharpness parame-
ter over which QM violations of different necessary conditions of 
MR persist. Thus it is shown that there is a trade-off between the 
sharpness parameter and the biasedness parameter characterizing 
arbitrary dichotomic POVM in the context of probing QM viola-
tions of local-realist (LR) and macro-realist (MR) inequalities. It is 
also observed that the above mentioned trade-off is more robust 
in the latter case which means that the effect of biasedness pa-
rameter counters the effect of unsharpness of measurements more 
in the latter case.

We organize this paper in the following way. We briefly dis-
cuss the characterization of the most general dichotomic POVM in 
Section 2. In Section 3, we consider the QM violation of the CHSH 
inequality with most general dichotomic POVM at one side. Then 
in Section 4 we show the trade-off between sharpness and biased-
ness parameter in probing the QM violations of three inequivalent 
necessary conditions of MR, i.e., LGI, WLGI, NSIT. Section 5 contains 
discussion and concluding remarks.

2. Generalized dichotomic measurements

Projective valued measurement (PVM) is a set of projectors that 
add to identity, i.e., A ≡ {Pi | ∑ Pi = I, P 2

i = Pi} (where Pi s are pro-
jectors). The probability of getting the i-th outcome is given by, 
Tr[ρ Pi] for the state ρ .

On the other hand, positive operator valued measurement 
(POVM) is a set of positive operators that add to identity, i.e., 
E ≡ {Ei | ∑ Ei = I, 0 < Ei ≤ I}. The probability of getting the i-th 
outcome is Tr[ρEi]. Effects (Ei s) represent quantum events that 
may occur as outcomes of a measurement.

In case of dichotomic measurements, the most general POVM 
is characterized by two parameters – sharpness parameter (λ) and 
biasedness parameter (γ ) and the corresponding effect operators 
are given by,

E± = λP± + 1 ± γ − λ

2
I, (1)

where P+ and P− are sharp projectors corresponding to the 
two outcomes + and − respectively. For E± being valid effect 
operators, the positivity (E± ≥ 0) and normalisation condition 
(E+ + E− = I) have to be satisfied. From these conditions it is fol-
lowed that |λ| +|γ | ≤ 1. Sharpness parameter (λ) characterizes the 
measurement precision which is related to the overlap between 
non-orthogonal probe states [19]. We consider λ to be positive as 
negative value of the sharpness parameter has no physical mean-
ing. Eq. (1) with γ = 0 gives unbiased unsharp measurement, 
which is also a dichotomic POVM, but not the most general one 
[17]. For unbiased unsharp measurement (1 − λ) characterizes the 
amount of unsharpness associated with the measurement.

3. QM violation of local-realism with most generalized 
dichotomic measurements

Quantum mechanical predictions are incompatible with local 
realist theory, which is probed through QM violation of Bell–CHSH 
inequality. Let us consider two spatially separated parties, say Al-
ice and Bob. Alice performs two dichotomic observables A and A′; 
Bob performs two dichotomic observables B and B ′ . In this sce-
nario the CHSH inequality [2] is given by

〈AB〉 + 〈AB ′〉 + 〈A′B〉 − 〈A′B ′〉 ≤ 2. (2)
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