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We consider the stationary sine-Gordon equation on metric graphs with simple topologies. Exact 
analytical solutions are obtained for different vertex boundary conditions. It is shown that the method 
can be extended for tree and other simple graph topologies. Applications of the obtained results to 
branched planar Josephson junctions and Josephson junctions with tricrystal boundaries are discussed.
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1. Introduction

Nonlinear wave equations have numerous applications in differ-
ent topics of physics and natural sciences (see, e.g., [1–6]). Recently 
they have attracted a lot attentions in the context of soliton trans-
ports in networks and branched structures [7–19]. Wave dynamics 
in networks can be modelled by nonlinear evolution equations 
on metric graphs. This fact greatly facilitates the study of soliton 
transports in branched systems. Metric graph is a system of bonds 
which are assigned a length and connected at the vertices accord-
ing to a rule, called “topology of a graph”. Solitons and other non-
linear waves in branched systems appear in different systems of 
condensed matter, polymers, optics, neuroscience, DNA and many 
others.

In condensed matters, very important branched systems where 
solitons can appear are the Josephson junction networks [20]–[21]. 
The phase difference in a Josephson junction obeys the sine-
Gordon equation [22]. Josephson junction networks can therefore 
be effectively modelled by the sine-Gordon equation on metric 
graphs. The early treatment of superconductor networks consist-
ing of Josephson junctions meeting at one point dated back to [23,
24]. An interesting realization of Josephson junction networks at 
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tricrystal boundaries was discussed earlier in [25], which inspired 
later detailed study of the problem using the sine-Gordon equation 
on networks in [17,26,27]. Discrete sine-Gordon equations were 
also used in [20,21,28] to describe different networks of Josepshon 
junctions having several junctions on each wire of a network. Re-
cently, a 2D sine-Gordon equation on networks was studied by 
considering Y and T junctions [18]. Discrete sine-Gordon equa-
tions on networks were also considered in [29].

In this paper we address the problem of stationary sine-Gordon 
equations on metric graphs by focusing on exact analytical solu-
tions for simple graph topologies. Such a one-dimensional, station-
ary sine-Gordon equation describes, for instance, the transverse 
component of the phase difference in a 2D Josephson junction in 
a constant magnetic field. The derivative of the phase difference 
presents the local magnetic field in the system [30–32]. Planar 
Josephson junctions were studied in [31,32] on the basis of solu-
tions of the stationary sine-Gordon equation on a finite interval. 
Here, we use a similar approach to solve the stationary sine-
Gordon equation on metric graphs. Two types of vertex boundary 
conditions are considered providing different conservation laws, 
continuity of the wave function and its derivatives. The model pro-
posed in this work can be used to describe static solitons in 2D 
Josephson junctions interacting with constant magnetic field [31,
32]. The results are then extended for metric tree graphs consist-
ing of finite bonds. The study can be generalized to other simple 
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Fig. 1. Sketch of a metric star graph. L j is the length of the jth bond with j = 1, 2, 3.

graph topologies, which can be constructed using star and loop 
graphs.

This paper is organized as follows. In the next section we give 
a formulation of the problem by deriving the boundary conditions 
for the a star graph and provide the exact analytical solutions for 
special cases. In Section 3, we extend the computational proce-
dures to metric tree graphs. In Section 4, we explore the stability 
of the obtained solutions. Finally, Section 5 presents some conclud-
ing remarks.

2. Vertex boundary conditions and exact solutions for star graph

The static sine-Gordon equation on a metric graph presented in 
Fig. 1 can be written as

d2

dx2
φ j = 1

λ2
j

sin(φ j), 0 < x < L j, (1)

where the wave function φ j is assigned to each bond of the graph 
and j = 1, 2, 3 is the bond number. For wave equations on net-
works, the connections of the network wires at the vertices are 
provided by the vertex boundary conditions. In case of linear wave 
equations, the underlying constraint to derive vertex boundary 
conditions is the self-adjointness of the problem [33,34]. However, 
for nonlinear case one should use different conservation laws [7,9,
18]. Here, for the stationary sine-Gordon equation we impose two 
types of boundary conditions. The first type provides the continu-
ity of the ‘weighted’ wave function derivatives

λ1
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∣∣∣∣
x=0

= λ2
dφ2

dx
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x=0

= λ3
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(2)

and conservation of the magnetic self-field flux at the vertex, 
which are given as

λ1φ1|x=0 + λ2φ2|x=0 + λ3φ3|x=0 = 0. (3)

The second type of vertex conditions has the form of wave function 
continuity at the vertex

φ1|x=0 = φ2|x=0 = φ3|x=0, (4)

and conservation of the applied magnetic flux at the vertex, which 
is given as

λ2
1

dφ1

dx

∣∣∣∣
x=0

+ λ2
2

dφ2

dx
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x=0

+ λ2
3

dφ3

dx

∣∣∣∣
x=0

= 0. (5)

In terms of Josephson junction networks the vertex conditions (3)
and (5) imply Kirchhoff rules for self-induced and external mag-
netic field fluxes. The boundary condition at the end of each bond 
is given by

dφ j

dx

∣∣∣∣
x=L j

= 2H j, (6)

with H j being the homogeneous external magnetic field applied 
along the jth bond. Such boundary conditions may appear in, e.g., 
branched graphene nanoribbons [35,36]. Since strained graphene 
creates pseudo magnetic field [37], in this way it is possible to 
obtain magnetic fields of different strengths along the different 
junctions when they have different strains.

The boundary conditions (2)–(3) are consistent with other mod-
els of Josephson junction networks previously studied theoreti-
cally in [17,25,31,32] as well as experimentally in [38–40]. De-
tailed derivation of these boundary conditions are resented in Ap-
pendix A. Exact solutions of Eq. (1) have been obtained earlier in 
[31,32,41] for the second boundary conditions on a finite interval. 
Here, we use an approach similar to that in [31,32] to obtain exact 
analytical solutions of Eq. (1) for the boundary conditions (2)–(6).

2.1. Solution of type I

Our purpose is to obtain exact analytical solutions of the prob-
lem given by Eqs. (1)–(6). A solution of Eq. (1) without boundary 
conditions can be written as [31,32]

φ
(±)
j (x) = (2n j + 1)π ± 2 arcsin

⎧⎨
⎩k j sn

⎡
⎣ x − x(±)

0, j

λ j
,k j

⎤
⎦
⎫⎬
⎭ (7)

where k j and x(±)
0, j are integration constants and sn is Jacobi’s el-

liptic function. Depending on the value of k j that is determined by 
the constraint |H jλ j | ≤ |k j | ≤ 1, we refer to the solution as solu-
tion of type 1 [31]. Taking into account that

dφ
(±)
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= ±2k j

λ j
cn
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from boundary condition (6) we have

x(±)
0, j = L j − λ j F

[
arccos

(
± H jλ j

k j

)
,k j

]
. (9)

Here, cn is Jacobi’s elliptic function [42] and F (ϕ, k) is the ellip-
tic integral of the first kind [42]. Then solution of type 1 of the 
sine-Gordon equation on a metric star graph with the boundary 
conditions (2)–(3) can be written as
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The vertex boundary conditions (2) and (3) lead to the follow-
ing system of transcendental equations for finding k j :
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