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A new variational technique for investigation of the ground state and correlation functions in 1D 
quantum magnets is proposed. A spin Hamiltonian is reduced to a fermionic representation by the 
Jordan–Wigner transformation. The ground state is described by a new non-local trial wave function, 
and the total energy is calculated in an analytic form as a function of two variational parameters. This 
approach is demonstrated with an example of the XXZ-chain of spin-1/2 under a staggered magnetic 
field. Generalizations and applications of the variational technique for low-dimensional magnetic systems 
are discussed.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

One-dimensional magnetic systems, both a simple chain and 
complex ones like decorated chains, zig-zag and ladder structures, 
are drawn a considerable attention of theoreticians and experimen-
talists [1–3]. It is related to recent progress in the synthesis of one-
dimensional molecular magnets [4] and quasi-one-dimensional 
magnetic structures in crystalline substances [5].

A Heisenberg chain of spin-1/2 is one of the most fundamental 
and thoroughly investigated models of magnetism [1]. Neverthe-
less, a few exotic phases were recently revealed: the ground state 
with E8 symmetry under a transverse magnetic field in CoNb2O6
[6], Bose glass in (Yb1−xLux)4As3 [7], and etc.

Analytic solutions for the Heisenberg antiferromagnetic (AFM) 
chain with magnetic field directed along the quantization axis are 
well-known, namely the ground state energy [1,2,8] and excita-
tion spectrum [9–11] which is gapless at magnetic fields below 
the critical value [12]. At the same time, a spin gap is observed 
in various one- and quasi-one-dimensional magnets [5]. In some 
cases the gap stems from a staggered magnetic field appeared due 
to the Dzyaloshinskii–Moriya interaction [13] or an effect of the 
transverse magnetic field on an anisotropic zig-zag chain [4].
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There are no analytic solutions for the Heisenberg chain un-
der the staggered magnetic field. An asymptotic solution for the 
isotropic chain in the limit of weak staggered field (hst → 0) was 
obtained by transformation to the sine-Gordon model [14]. It is 
valid within a very narrow region in the vicinity of hst = 0. The 
finite-temperature density-matrix renormalization group (DMRG) 
theory allowed resolving the problem at wider range of finite stag-
gered field [15]. Recently the XXZ-chain with staggered magnetic 
field was thoroughly investigated using the mean-field approach 
with fluctuation corrections up to the second order and the ex-
act diagonalization on finite clusters [16]. The Heisenberg Hamil-
tonian was preliminarily mapped onto a fermionic representation 
by the Jordan–Wigner transformation [17]. It was shown that the 
mean-field approximation with the corrections in a number of 
cases gives unsatisfactory results. In particular, in the limit hst → 0
it leads to a divergence of the ground state energy for the XY-
chain and an unphysical behavior of the spin gap for the isotropic 
Heisenberg chain [16].

On the other hand, the mapping on the fermionic representa-
tion by means of the Jordan–Wigner transformation makes pos-
sible applying well-developed techniques of strongly correlated 
Fermi systems theory. In particular, a variational Gutzwiller ap-
proach [18] has allowed calculating the ground state energy of 
the Hubbard model for the infinite-dimensional lattice. It was 
also successively applied to low dimensional lattices up to one-
dimensional chain [19]. The Gutzwiller trial wave function had 

https://doi.org/10.1016/j.physleta.2018.02.031
0375-9601/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physleta.2018.02.031
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:yu_kudasov@yahoo.com
https://doi.org/10.1016/j.physleta.2018.02.031


JID:PLA AID:24978 /SCO Doctopic: Condensed matter [m5G; v1.232; Prn:2/03/2018; 11:38] P.2 (1-4)

2 Yu.B. Kudasov, R.V. Kozabaranov / Physics Letters A ••• (••••) •••–•••

been intended for control of intrasite correlations, its generaliza-
tion enabled to include non-local correlations between the near-
est neighbors [20]. It was shown that this trial wave function 
produces a good approximation of the ground state for the Hub-
bard model even in the one-dimensional case. Since the fermionic 
representation for Heisenberg chain contains interactions between 
the nearest-neighboring sites, the generalized non-local trial wave 
function seems to be a promising candidate for its ground state 
description.

In the present Letter, we propose a new variational approach 
to one-dimensional quantum magnets and illustrate it by example 
of the Heisenberg XXZ-chain with the staggered magnetic field. 
The procedure includes the follow steps: (i) the transition to the 
fermionic representation by means of the Jordan–Wigner transfor-
mation, (ii) development of the trial wave function for spinless 
fermions, (iii) calculation of the ground state energy, correlation 
functions, and other characteristics with the trial wave function.

2. Jordan–Wigner transformation

The Hamiltonian of spin-1/2 Heisenberg XXZ chain under the 
staggered magnetic field has the following form [16]

Ĥ = Ĥxy + Ĥzz + Ĥst (1)

where Ĥxy = J
2

∑N
i

(
Ŝ+

i Ŝ−
i+1 + Ŝ−
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i+1

)
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are the xy- and zz-terms of the Hamiltonian, Ĥst = hst
∑N

i (−1)i Ŝ z
i

is the contribution of the staggered magnetic field hst , Ŝ+
i

(
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)
and Ŝ z

i are the operators of spin raising (lowering) and its compo-
nent along the z-axis. The constant J is assumed to be positive. 
Below we discuss mainly behavior of the anisotropic AFM chain 
(� ≥ 0), however the results remain valid for the ferromagnetic 
(FM) chain also (� < 0).

The Jordan–Wigner transformation allows representing the spin 
operators through creation (annihilation) operators for spinless 
fermions at the i-th chain site ĉ†

i (ĉi ) [17]:
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This reduces the Hamiltonian (1) to a model of fermionic chain 
[16]:

Ĥ = Ĥ0 + Ĥ1, (3)
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where â†
i and b̂†

i are the creation operators for spinless fermions 
at the A and B sublattices correspondingly, that is, â†

i ≡ ĉ†
i (i ∈ A) 

and b̂†
j ≡ ĉ†

j ( j ∈ B). The Hamiltonian (3) contains quadratic (Ĥ0) 
and biquadratic (Ĥ1) parts. The first one corresponds to the kinetic 
energy of a tight-binding model, and the second represents an in-
teraction between the fermions at the nearest-neighboring chain 
sites.

The quadratic part of the Hamiltonian Ĥ0 is diagonalized by a 
unitary transformation [16]

Ĥ0d = U Ĥ0U−1 =
∑

k

εk

(
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†
kα̂k − β̂

†
k β̂k

)
(4)

where εk =
√

J 2 cos2(k/2) + h2
st . Hereinafter we use a reduced 

Brillouin zone corresponding to the doubled chain period, that 
is, k/2 → k. It should be mentioned that Ĥ0d corresponds to 
the XY-model with the staggered magnetic field. In the ground 
state, the branch with the negative eigenvalues is fully filled up 
(nβk = β̂

†
k β̂k = 1), and that with the positive ones is empty (nαk =

α̂
†
kα̂k = 0). Thus the ground state of the XY-chain in the staggered 

magnetic field is determined exactly:

|ϕ̃〉 =
∏

k

β
†
k |0〉. (5)

For the sake of convenience, below we apply a representa-
tion of the operators â†

i and b̂†
i expressed in terms of the diago-

nal operators α̂†
k and β̂†

k by means of the inverse transformation 
|ϕ〉 = U−1|ϕ̃〉.

3. Trail wave function

To generate a non-local trial wave function one should define 
projection operators on all possible configurations of the nearest 
neighboring pairs of sites in the chain [20]. There are four such 
configurations for spinless fermions
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where < ... > denotes a sum over all the pairs of the nearest 
neighbors. The sites in the pairs belong to different sublattices: 
(i ∈ A) and ( j ∈ B).

It is worth noticing that the operators Ŷk are not completely 
independent [20]. Thus, let us consider expectation values of the 
operators yk = L−1 < Ŷk >. They can be interpreted as probabilities 
of the corresponding pairs configurations. One can see that yk are 
related to one another by conditions of normalization (

∑
k yk = 1) 

and half-band filling (y2 + y3 + 2y4 = 1). Then it is convenient 
to introduce a pair of independent symmetrized operators M̂ =
Ŷ3 − Ŷ2 and P̂ = Ŷ3 + Ŷ2. Their physical meaning can be clarified 
by the averages m = L−1 < M̂ > and p = L−1 < P̂ >: the limiting 
value m = 1 corresponds to the chain state when all the site of the 
B sublattice are filled up (nB = 1) and all the sites of the A sub-
lattice are empty (nA = 0), and in the opposite limit (m = −1) vice 
versa (nA = 1 and nB = 0). That is why, m denotes the AFM magne-
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