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An analytical study on nonlinear evolution of Langmuir waves in warm electron-positron-dusty plasmas 
is presented. The massive dust grains of either positively or negatively charged are assumed to form a 
fixed charge neutralizing background. A perturbative analysis of the fluid-Maxwell’s equations confirms 
that the excited Langmuir waves phase-mix and eventually break, even at arbitrarily low amplitudes. It is 
shown that the nature of the dust-charge as well as the amount of dust grains can significantly influence 
the Langmuir wave phase-mixing process. The phase-mixing time is also found to increase with the 
temperature.

© 2018 Elsevier B.V. All rights reserved.

Dusty plasma, as its name suggests, generally carries a small 
amount of charged dust grains of micrometre or sub-micrometre 
size along with the electrons, ions and other probable compo-
nents [1,2], and they are quite ubiquitous in astrophysical envi-
ronments [3,4]. Charged dust particles can also naturally coexist in 
electron-positron plasmas maintaining overall charge neutrality in 
equilibrium [5–7]. Such pair-dusty plasmas are believed to exist in 
supernova and pulsar environments [8] and have been created in 
laboratory experiments [9]. In recent decades, a considerable at-
tention has been paid on the role the dust particles playing in the 
collective effects and strong electromagnetic interaction between 
the charged particles [10–16]. In this Letter, we investigate what 
kind of physical effect the presence of dust grains brings in on 
the phase-mixing of excited electrostatic Langmuir waves in warm 
electron-positron plasmas. We show here that the process of Lang-
muir wave phase-mixing can be strongly influenced by the nature 
and amount of the background dust charge grains.

It is well known that phase-mixing is a novel physical phe-
nomenon which can cause an excited wave or oscillation to break 
at arbitrary amplitudes, even if the perturbation amplitude is kept 
well below the threshold value [17–22]. Over the years, breaking 
of waves/oscillations in plasmas has been discussed as a funda-
mental topic of research owing of its potential applications like 
ion and electron heating [23,24], particle acceleration to high en-
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ergies [25,26], etc. An excited wave or oscillation is called phase-
mixed when its characteristic frequency becomes space dependent 
due to some physical reasons like inhomogeneity [17,27,28], rel-
ativistic effects [29,30], etc. Physically, space dependent frequency 
causes different plasma species to oscillate with different local fre-
quencies, leading to crossing of their trajectories in a finite time 
(wave-breaking). The particle-bunching and spiky density profile 
are common signatures of phase-mixing/wave-breaking [30–34].

For our analysis, we assume a system of warm electron-positron 
plasma containing a small amount of dust grains which are ei-
ther positively or negatively charged. Massive dusts are consid-
ered to form a uniform background with density N0d . In equilib-
rium, the plasma-species maintain an overall charge neutrality, i.e., 
n0d +n0p = n0e , where n0p and n0e , respectively, denote the unper-
turbed densities of the positrons and electrons. And, n0d = sZd N0d , 
where Zd quantifies the amount of dust charge on dust grain with 
s = +1 or s = −1 for positively or negatively charged dust, respec-
tively. In one space dimension, the space-time evolution of Lang-
muir waves in electron-positron-dusty (EPD) plasmas can be fairly 
described by the following electron-positron fluid and Maxwell’s 
equations:

∂tn j + ∂x(n j v j) = 0, (1)

m jn j
(
∂t + v j∂x

)
v j = q jn j E − ∂x p j, (2)

∂x E = 4πen0d + 4π
∑

j

q jn j, (3)
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where the index j equals ‘p’ for positrons and ‘e’ for electrons. 
And, n j , v j , m j , p j , and q j represent the densities, velocities, 
masses, pressures, and charges of either electrons or positrons, re-
spectively, with q j = e for the positrons and q j = −e for electrons. 
For equal mass species mp = me = m. The pressure is assumed to 
be isotropic: p j = γ n j T j [35], where γ is the ratio of the spe-
cific heats and T j denotes the temperature of the j-th species 
in Boltzmann unit. For simplicity in analysis, we further assume 
T p � Te = T . Now linearizing Eqs. (1)–(3) we find the dispersion 
relation of Langmuir waves in warm EPD plasmas: ω2 = ω2

pe +
ω2

pp + k2 v2
th , where ωpe = √

4πn0ee2/m and ωpp =
√

4πn0pe2/m

denote the electron and positron plasma frequencies, respectively, 
with vth = √

γ T /m denoting the thermal velocity of either elec-
trons or positrons.

Next, we perform nonlinear analysis of Eqs. (1)–(3). For the pur-
pose, introducing new variables:

δns = δnp + δne, δnd = δnp − δne,

V = v p + ve, and v = v p − ve,

where δnp = np − n0p and δne = ne − n0e , followed by normal-
izing the relevant variables as t → ωpet , x → kx, n j → n j/n0e , 
v j → kv j/ωpe , E → ekE/mω2

pe , one can simply arrive at the fol-
lowing equations:

∂tδnd + ∂x
[
(1 − αd)v p + (V δnd + vδns)/2

]
= (αd/2) ∂x(V − v), (4)

∂tδns + ∂x [(1 − αd)V + (V δns + vδnd)/2]

= − (αd/2) ∂x(V − v), (5)

∂t V + ∂x[(v2 + V 2)/4] = −v2
t ∂x

(
ln np + ln ne

)
, (6)

∂t v + ∂x (v V /2) = 2E − v2
t ∂x(ln np − lnne), (7)

∂x E = δnd, (8)

where αd = n0d/n0e , denoting the ratio of equilibrium dust density 
to equilibrium electron density, and vt is the normalized thermal 
velocity of either electrons or positrons. We now solve Eqs. (4)–(8)
by employing a straightforward perturbation expansion technique 
subjected to the initial conditions: δns(x, 0) = δ cos x, δnd(x, 0) =
−δ cos x, V (x, 0) = v(x, 0) = 0, where δ is the amplitude of pertur-
bation. Treating δ as a small expansion parameter, we expand all 

the field variables as f (x, t) =
∞∑

i=1

f (i)(x, t) [36]. Inserting the field 

expansion series into the set of Eqs. (4)–(8) followed by solving 
the first order equations, we find the following solutions:

δn(1)

d = δ cos x [A1(1 − cos ω̄t) − 1],
δn(1)

s = −δ cos x [B1(1 − cos ω̄t) + B2(1 − cos vtt) − 1],
V (1) = δ sin x (vt sin vtt),

v(1) = δ sin x [C1 sin vtt − C2 sin ω̄t],
and

E(1) = δ sin x [A1(1 − cos ω̄t) − 1], (9)

where the coefficients are given by

A1 =
[

αd v2
t + (2 − αd)(2 + v2

t )

2ω̄2

]
,

B1 = 1

2

[
α2

d v2
t

ω̄2(2 − αd)
+ αd(2 + v2

t )

ω̄2

]
,

B2 = 1

2

[
(2 − αd) − α2

d

(2 − αd)

]
,

C1 = αd vt

(2 − αd)
, and C2 =

[
(2 + v2

t )

ω̄
+ αd v2

t

ω̄(2 − αd)

]
,

with ω̄ =
√

(2 − αd) + v2
t , denoting the normalized frequency of 

the Langmuir waves. The first order solutions given in Eq. (9)
shows the presence of Langmuir modes, acoustic modes, and zero 
frequency modes. The zero frequency modes bear the dominant 
significance in the context of phase-mixing, because the fast time 
scale average of E(1) or δn(1)

s results in nonzero DC terms, indicat-
ing an onset of phase-mixing in the excited Langmuir waves [21].

In the next order, the obtained solutions of a few relevant field 
variables V (2) and v(2) are given as

V (2) = δ2 sin 2x [a0 sin 2vtt + a1 sin vtt − a2 t cos 2vtt

− a3 sin ω̄t − a4 sin 2ω̄t − a5 sin (ω̄ + vt)t

− a6 sin (ω̄ − vt)t],
v(2) = δ2 sin 2x [b0 sinω∗t + b1 sin vtt + b2 sin 2vtt

+ b3 sin ω̄t − b4 sin 2ω̄t − b5 sin (ω̄ + vt)t

+ b6 sin (ω̄ − vt)t], (10)

showing generation of higher harmonics of Langmuir and acoustic 
modes, as expected. And, in Eq. (10), the various coefficients are as 
follows:

a0 = −a1

2
+ a2

2vt
+ a3ω̄

2vt
+ a4ω̄

vt

+ a5(ω̄ + vt)

2vt{(ω̄ + vt)2 − 4v2
t } + a6(ω̄ − vt)

2vt{(ω̄ − vt)2 − 4v2
t } ,

with

a1 = −1

3
[(1 − B1 − B2)(λ1 vt + λ2C1)

+ (A1 − 1)(λ1C1 + λ2 vt)] ,

a2 = − 1

32
[2(v2

t + C2
1) + 4vt B2(λ1 vt + λ2C1)

− v2
t B2

2(1 + 4λ2
2α

−2
d )],

a3 = v2
t

4(ω̄2 − 4v2
t )

[4C2{λ1(A1 − 1) + λ2(1 − B1 − B2)}

+ ω̄(B1 − A1)
{(

1 + 4λ2
2α

−2
d

)
(A1 − B1 − B2)

+ 2(1 − A1)
}
],

a4 = − 1

32(2 − αd)

[
2ω̄C2

2 + 4v2
t C2(λ1 A1 − λ2 B1)

− ω̄v2
t

{
4λ2

2α
−2
d (A1 − B1)

2 + (A1 + B1)
2
}]

,

a5 = − v2
t

2{(ω̄ + vt)2 − 4v2
t } [λ1(vt B1 − A1C1)

+ λ2 (B1C1 − B2C2 − vt A1)] ,

a6 = v2
t

2{(ω̄ − vt)2 − 4v2
t } [λ1(vt B1 − A1C1)

− λ2 (vt A1 − B1C1 − B2C2)] ,

and

b0 = 1

ω∗ [−vt(b1 + 2b2) − ω̄(b3 − 2b4) + (ω̄ + vt)b5

− (ω̄ − vt)b6],
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