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Studies of the Abrikosov vortex motion in superconductors based on time-dependent Ginzburg–Landau 
equations reveal an opportunity to detect the values of the Aharonov–Bohm type curl-less vector poten-
tials without closed-loop electron trajectories encompassing the magnetic flux.
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1. Introduction

Anyone who has dealt with Maxwell’s equations is familiar with 
the vector potential A. Originally, it was introduced by Maxwell as 
a result of the influence of Faraday’s concept of the “electrotonic 
state” (see, e.g., Ref. [1]). Later, however, Heaviside and Hertz elim-
inated the need for A in these equations [2]. Indeed, because of 
gauge invariance, the addition of the gradient of an arbitrary func-
tion to A does not affect the predicted electric E and magnetic H
fields as the solution of Maxwell’s equations. Thus, it was believed 
that A did not fit the definition of a real field and was rather an 
auxiliary, mathematical tool for solving equations for E and H , the 
“real” fields.

This point of view, however, has been altered with the appear-
ance of quantum mechanics. The phase of the wave function of 
charged quantum objects couples with the vector potential in a 
way that makes gauge transformations themselves, not the vector 
potential, merely mathematical tools. Moreover, there are subtle 
effects in the quantum world, such as the Aharonov–Bohm (AB) 
effect [3], in which electrons interfere in the presence of the curl-
less A-field. Such a field can be created, for example, by a very 
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long solenoid. In the area of electron propagation, both the local 
E and H are zero, but electron motion is affected by the A-field 
[4]. In his classical text [5], Feynman defined the real field as a 
“mathematical device for avoiding the idea of action at a distance.” 
Commenting on the AB-effect, he came to the conclusion that “the 
classical electromagnetic field acting locally on a particle is not 
sufficient to predict its quantum-mechanical behavior”. It follows 
from this statement that either H should yield its role to A, which 
then acquires a status of a real field, or, alternatively, the mag-
netic field inside the solenoid (i.e., in its core) acts non-locally on 
electronic motion outside of the solenoid. Such a “spooky action at 
a distance”, as Einstein would have said [6], follows from Stokes’ 
theorem:∮
C

A · dl =
∫
S

curl A · ds =
∫
S

H · ds = � (1)

where S is a surface strained on the contour C and � is the 
magnetic flux inside of the solenoid (see, e.g., [7]). The contour 
C follows a closed trajectory of electronic wave propagation. In all 
the experiments (see, e.g., Ref. [8] and citations therein), the detec-
tion becomes possible only if the electron trajectories fully encircle 
the source of the curl-less vector potential.

In this article, a new effect is uncovered theoretically. It can 
be used for the detection of the curl-less A. In principle, the de-
tection of the curl-less A occurs in the AB-effect. However, in the 
case of the AB-effect, the presence of a “quantum ring” around 
the source of magnetic flux is mandatory. In our case, the vector-
potential is being detected quasi-locally in space, without encir-
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Fig. 1. Experimental setup. The (x, y)-plane is orthogonal to the axis of the solenoid. 
The vector A is tangential to the loop with an amplitude Aθ (ρ) ≡ A(ρ). � =
H0π R2 is the magnetic flux inside the solenoid.

cling the source of the magnetic field by a quantum ring. The 
curl-less static A-field affects nonlinear quantum dynamics in a 
short, thin, current-carrying superconducting strip. The resulting 
features due to the A-field are detectable by classical instruments.

2. Choice of model and basic equations

2.1. General physical setup

Let us consider an infinitely long solenoid and direct the z-axis 
of the coordinate system along it. Then, the curl-less vector poten-
tial, curl Aext = H ext = 0, in cylindrical coordinates (z, ρ, θ ), is:

Aext(z,ρ, θ) = (Az, Aρ, Aθ ) = (0,0,α/ρ), ρ > R (2)

where α = H0 R2/2, H0 is the magnetic field amplitude inside the 
solenoid, and R is the radius of the solenoid (Fig. 1).

In this experimental layout, the quantum object, a supercon-
ducting bar, is affected by the vector potential, which is tangential 
to the circumference to which the bar is a chord. Obviously, if the 
bar is short enough, Aext along its length may be regarded ap-
proximately as a constant at a given distance ρ = ρ0 from the 
solenoid. Moreover, if the width of the bar is much smaller than 
the distance ρ0, one can neglect the variation of Aext across the 
cross section of the bar. Thus, we consider Aext inside the bar to 
be directed along its length and constant in space and time. Two 
cases are still possible: Aext = A0 and Aext = −A0. Switching the 
current direction in the solenoid will change the direction of the 
vector potential: Aext → −Aext . It is very important to notice that 
such an action should be performed with special care to have jus-
tifiable experimental results: any temporal variation of the A-field 
creates an electric field E = −∂ A/∂t in the reference frame cou-
pled with the superconducting bar (here and below, we use the 
units h̄ = c = e = 1), and the effects imposed upon the bar can be 
attributed to E . To avoid this, one should start the experiment at 
temperatures above the critical temperature of the superconductor 
(T > Tc), mount the bar in the vicinity of the solenoid (as shown 
in Fig. 1), set up the value of � (i.e., Aext ), connect the bar to a 
classical measuring circuit, and then only cool down to T < Tc in 
order for the bar to become superconductive. At the instant of su-
perconducting transition, the coupling between the phase of the 
Cooper pairs’ condensate wave function and the vector potential is 
setting up. After equilibrium is reached, one can switch on the ex-
ternal current through the bar and watch the classically observable 
dynamic quantum effects. The expected events will be modeled in 
this article by the time-dependent Ginzburg–Landau (TDGL) equa-
tions.

2.2. TDGL equations

The motion of current in the superconducting bar in Fig. 1 is 
affected by two fields: i) the field induced by a “classical mea-
suring apparatus”, which principally represents a current source 

and a voltmeter measuring the voltage across the bar; ii) the field 
of the solenoid described above. To describe the current flowing 
through this bar, we utilize a set of TDGL equations [9–15] in the 
simplest “gapless” limit [9]. This is not an oversimplification: the 
condensate of Cooper pairs fully reveals its quantum properties in 
this limit. Moreover, we also performed calculations in the more 
general “finite gap” case with a qualitatively similar outcome. The 
adopted restriction makes the consideration more transparent.

The equation for the order parameter � = |�|exp(iθ) can be 
written in the form:

− π

8Tc

(
∂

∂t
+ 2iϕ

)
� + π

8Tc

[
D (∇ − 2i A)2

]
�

+
(

Tc − T

Tc
− 7ζ(3)

|�|2
8(π Tc)2

)
� = 0. (3)

Here, A and ϕ are vector and scalar potentials of the electromag-
netic field, Tc is the critical temperature of the superconductor, 
D is the electronic diffusion coefficient, and ζ(3) is the Riemann 
zeta function. Obviously, A should include both the contribution of 
the solenoid and the contribution of the current flowing through 
the superconductor. For the numerical modeling which follows, 
Eq. (3) should be rewritten in its dimensionless form [16–18]:

(
∂

∂τ
+ iφ

)
 = −

(
i

k
∇ + A

)2

 +
(

1 − ||2
)

. (4)

Here, κ = λL/ξ is the Ginzburg–Landau parameter,  = �/�0, 
τ = t D/ξ(T )2, φ = 2ϕξ(T )2/D , and A = 2Aξ , where ξ2(T ) =
π D/[8(Tc − T )] and �2

0 = 8π2Tc(Tc − T )/[7ζ(3)]. In the same no-
tations, the equation for the current density can be represented 
as

σ

(
∂A

∂τ
+ ∇φ

)
= 1

2ik

(
∗∇ − ∇∗) − ||2 A − ∇ × ∇ × A.

(5)

Note that equations (4) and (5) are gauge-invariant, and we can 
use the most convenient gauge when solving them. In Eq. (5), 
one can recognize the current expression j = jn + js , where 
jn = −σ(Ȧ + ∇φ) is the normal component of the current j =
∇ × ∇ × A, and the rest is the superconducting component js . 
We chose the gauge φ = 0. This choice is common when solving 
TDGL equations (see, e.g., [16–18]). Other choices are also feasible, 
and their well-posedness is proven for both the finite element, fi-
nite difference, and finite volume settings (see, e.g. Ref. [19] and 
citations therein). For our particular task, the gauge φ = 0 is con-
venient because the solenoidal potential is static and is not associ-
ated with any electric field: E sol = −∂ Aext/∂t + ∇φ ≡ 0. This does 
not mean that electric fields are excluded from consideration: the 
A-field inside the bar, as we will see, is time dependent and the 
E-field plays an important role in the dynamics to be considered.

2.3. Equations in 2D- and 1D-cases

TDGL equations in the φ = 0 gauge have been successfully used 
in various 1D and 2D problems. In particular, the dynamics of the 
penetration of single-flux quantum vortices into superconducting 
disks have been studied [16,17]. In these cases, a magnetic field is 
applied externally to a thin film of finite geometry. Alternatively, in 
the case of no applied external H -field, one can consider a finite 
strip of a superconductor, in which the current enters through one 
facet and exits through the opposite facet (Fig. 2).

The flow of this current generates a magnetic field with the 
field lines encircling the strip and thus directed oppositely at the 
horizontal edges of the strip. This field also initiates single flux 
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