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We demonstrate a possibility to make rogue waves (RWs) in the form of the Peregrine soliton (PS) 
and Kuznetsov–Ma breathers (KMBs) effectively stable objects, with the help of properly defined 
dispersion or nonlinearity management applied to the continuous-wave (CW) background supporting 
the RWs. In particular, it is found that either management scheme, if applied along the longitudinal 
coordinate, making the underlying nonlinear Schrödinger equation (NLSE) self-defocusing in the course of 
disappearance of the PS, indeed stabilizes the global solution with respect to the modulational instability 
of the background. In the process, additional excitations are generated, namely, dispersive shock waves 
and, in some cases, also a pair of slowly separating dark solitons. Further, the nonlinearity-management 
format, which makes the NLSE defocusing outside of a finite domain in the transverse direction, enables 
the stabilization of the KMBs, in the form of confined oscillating states. On the other hand, a nonlinearity-
management format applied periodically along the propagation direction, creates expanding patterns 
featuring multiplication of KMBs through their cascading fission.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The nonlinear Schrödinger equation (NLSE) and its variants are 
well known as universal models for nonlinear waves and soli-
tons, as well as relevant phenomenology, in many areas of physics 
including water waves, plasmas, nonlinear optics, Bose–Einstein 
condensates, and so on [1–9]. Among various solutions of these 
equations, a class of unstable but physically meaningful ones rep-
resent rogue waves (RWs), which can spontaneously emerge on 
top of continuous-wave (CW) modulationally (alias Benjamin–Feir 
[10,11]) unstable states, and then disappear. RWs were origi-
nally identified in terms of water waves in the ocean [12]. Later, 
this concept was extended to nonlinear fiber optics [13–17] and 
other areas (see, e.g., Refs. [18–21]). Recently, the pioneering work 
of [22] argued that the so-called Peregrine solitons (PSs) are a 
generic byproduct of a phenomenon called gradient catastrophe 
arising at the level of the semi-classical form of the NLSE. More-
over such solutions also emerged in the context of interactions of 
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dispersive shock waves [23]. An overview of the current state of 
the studies of RWs can be found in Ref. [24,25].

The classical integrable NLSE with the cubic self-focusing non-
linearity, in terms of the spatial-domain propagation (or with the 
anomalous group-velocity dispersion (GVD), in terms of fiber optics 
[2]) gives rise both to the CW states subject to the modulational 
instability, and to exact RW solutions, the most fundamental ones 
being the Peregrine soliton (PS) [26], the Kuznetsov–Ma breather 
(KMB) [27,28], and the Akhmediev breather [29]. The PS is a state 
of an instanton type built on top of the CW background, i.e., it 
is localized both in the longitudinal and transverse coordinates 
(if the NLSE is considered as a model of a planar waveguide in 
the spatial domain). The KMB, on the other hand, is localized in 
the transverse direction, and periodically oscillates in the longitu-
dinal one, while the Akhmediev breather [29], is periodic in the 
transverse direction and self-localized along the propagation dis-
tance. Due to the fact that all these states are supported by the 
modulationally unstable background, they are unstable too, which 
poses a limitation to their physical realizations; even when they 
are carefully realized experimentally [17], the modulational insta-
bility of the background cannot be avoided. On the other hand, the 
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Fig. 1. Density plots illustrating the evolution of a Peregrine soliton (left) and a Kuznetsov–Ma breather with ω = 1.5 (right) in the framework of the constant-coefficient 
NLSE (1), which does not include any management.

concept of the dispersion and nonlinearity management [6,30] sug-
gests a possibility to stabilize RWs by making the GVD and/or local 
nonlinearity coefficients functions of the propagation distance or 
transverse coordinate. This way, the solitons and breathers would 
have enough room to emerge in areas where the NLSE is self-
focusing, and, on the other hand, the background may be globally 
stabilized by making the NLSE self-defocusing outside of the area 
reserved for the formation of the RWs. The objective of the present 
work is to demonstrate the “proof of principle” as regards these 
possibilities for the effective stabilization of the PS and KMBs, ap-
plying the schemes of both the dispersion and nonlinearity man-
agement. While our focus here is on numerical experiments, the 
existence [30] and earlier experimental implementation [30–32] of 
related schemes suggests their potential realization in (near-)future 
optical and related physical systems.

The paper is organized as follows. The model and numerical 
methods used for its analysis are presented in Section 2. The re-
sults obtained for the stabilization of the PS and KMBs, under the 
action of the management, are reported, respectively, in Sections 3
and 4 (while both the dispersion and nonlinearity management 
are applied to the PS, only the latter scheme is considered for the 
KMBs). Finally, the paper is concluded by Section 5.

2. The model and numerical scheme

The NLSE which we use for the stabilization of the PSs and 
KMBs is taken as

iuz + 1

2
D(z)uxx + γ (x, z)|u|2u = 0. (1)

In the spatial domain, which corresponds to the light propaga-
tion in a planar waveguide, the diffraction coefficient is constant, 
D(z) ≡ 1, while the local nonlinearity coefficient may be modu-
lated as a function of the propagation and transverse coordinates, 
z and x [6]. In the temporal domain, corresponding to the light 
propagation in an optical fiber, x is actually the reduced time, 
τ ≡ t − z/V gr (t is time proper, and V gr is the group velocity of 
the carrier wave), the relevant fiber’s model has γ (x, z) ≡ 1, while 
the GVD coefficient, D(z) may be made a function of the prop-
agation length, using known techniques of the GVD management 
[15,30].

The integrable version of the NLSE, i.e., Eq. (1) with D(z) ≡ 1
and γ (x, z) ≡ 1, gives rise to the exact PS [26] and KMB [27,28]
solutions:

uPS(x, z) =
[

1 − 4(1 + 2iz)

1 + 4x2 + 4z2

]
eiz, (2)

uKMB(x, z) =
[

1 + 2(1 − 2a) cos(ωz) − iω sin(ωz)√
2a cosh(bx) − cos(ωz)

]
eiz, (3)

where a ≡
(

1 + √
ω2 + 1

)
/4 and b ≡ 2

√
2a − 1, while ω is an 

arbitrary frequency of the KMB oscillations. As explained in the 
Introduction, both solutions are supported by the CW background, 
exp(iz), which is prone to the modulational instability.

To demonstrate effects of management, we present here results 
of numerical simulations of Eq. (1) with initial condition:

u(x,0) = uPS(x, z0), z0 = −5, (4)

when dealing with PS (the choice of z0 = −5 is appropriate for 
demonstrating both the growth and the decay phase of the wave 
structure). In the case of KMBs, the input is taken as:

u(x,0) = uKMB(x,0). (5)

In the latter case, we set ω = 1.5 here, as this value was found 
to be appropriate for representing the generic situation. Note that, 
as RW solutions possess relatively steep peaks, the present ver-
sion of the NLSE is a mildly stiff equation for simulations, in 
these cases. To handle it, we have used the exponential time dif-
ferencing fourth-order Runge–Kutta numerical algorithm [33]. The 
discretization of the second derivative was performed by dint of 
the Fourier spectral collocation, implying periodic boundary condi-
tions imposed on the integration domain, −L < x < +L. Here we 
report results produced for L = 200, and a discretization spacing 
�x = 25/256 ≈ 0.10, as well as a time step �t = (�x)2/4. These 
parameters ensure the stability of the numerical integration.

Fig. 1 shows the outcome of the simulations performed for the 
NLSE (1) in the absence of management, D = γ ≡ 1, using the 
above-mentioned PS and KMB wave forms as initial conditions. The 
onset of the modulational instability, seeded by truncation errors 
of the numerical algorithm, is clearly observed at the center of the 
domain. It is natural that this occurs there, as the presence of the 
PS amplifies growing perturbations on top of the unstable back-
ground. Notice that, recently, the instability of the KMB – and by 
extension of the PS in the limit of vanishing frequency – was ana-
lyzed via Floquet theory in Ref. [34].

3. The management of Peregrine solitons

First, we test the effects of the management applied to the PS. 
For this purpose, we have performed simulations of Eq. (1) with 
either D ≡ 1 and z-dependent nonlinearity γ (z), or vice versa. As 
we show below, in both cases outcomes are quite similar. The non-
linearity management is implemented as:

γ (x, z) =
{

1 at z < z1
−1 at z ≥ z1

,

D ≡ 1,

(6)

i.e., the originally focusing nonlinearity switches to defocusing at 
z = z1, while the dispersion management can be introduced as
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