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We address control of electronic phase transition in charged impurity-infected armchair-edged boron-
nitride nanoribbons (ABNNRs) with the local variation of Fermi energy. In particular, the density of states 
of disordered ribbons produces the main features in the context of pretty simple tight-binding model 
and Green’s functions approach. To this end, the Born approximation has been implemented to find the 
effect of π-band electron-impurity interactions. A modulation of the π-band depending on the impurity 
concentrations and scattering potentials leads to the phase transition from insulator to semimetallic. We 
present here a detailed physical meaning of this transition by studying the treatment of massive Dirac 
fermions. From our findings, it is found that the ribbon width plays a crucial role in determining the 
electronic phase of disordered ABNNRs. The obtained results in controllable gap engineering are useful 
for future experiments. Also, the observations in this study have also fueled interest in the electronic 
properties of other 2D materials.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Two-dimensional (2D) graphene clearly has advantages over 
other carbon nanomaterials due to high electron mobility, massless 
relativistic Dirac fermions, and strong mechanical properties [1–3]. 
Graphene nanoribbons (GNRs) have been synthesized empirically 
by cutting exfoliated graphene [4] and attracted the attention of 
researchers owing to their unique properties, for instance, many 
different devices can be designed using graphene because of their 
excellent geometrics. In recent years, the electronic and magnetic 
properties of GNRs have been widely addressed theoretically in 
various fields [5–7].

Doping is one of the possible ways to improve the electronic 
properties of GNRs [8–11]. Yu et al. [9] have reported that the dop-
ing site is an important factor related to the electronic properties 
of nitrogen-doped GNRs. In Ref. [11], the authors studied the effect 
of boron doping on the electronic transport properties of GNRs and 
found that transition from metallic to the semiconductor in GNRs 
can occur when boron atoms substitute at nanoribbons edges. They 
also argued that the symmetry of spin-up and spin-down transmit-
tance channel breaks by this substitution. In another study, which 
set out to determine the doping effect on electronic properties of 
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GNRs, it has been shown that substitution of oxygen in edges of 
GNRs prevents the agglomeration of spin in its neighborhood and 
leads to semiconductor-metal transition at high density in zigzag 
nanoribbons [12].

Novoselov et al. [13] discovered the single-layered hexagonal 
boron-bnitride (h-BN) atomic crystals empirically. This new mate-
rial has been used in many electronic devices owing to high ther-
mal stability [14] and excellent electronic properties [15]. Similar 
to GNRs, BN nanoribbons (BNNRs) could be prepared empirically 
by cutting the 2D BN crystal, as schemed in Fig. 1(a). In contradic-
tion with the GNRs, the zigzag-type BNNRs are metallic, while the 
armchair BNNRs are insulators, as shown in Fig. 1(b), separate of 
ribbon widths (t � 3 eV [16]). More recent attention has focused 
on these new 2D materials [17–19]. The substitutional carbon dop-
ing of BN nanostructures has been exemplified in a report by Wei 
et al. [17]. The findings from this study have demonstrated carbon 
doping leads to electrical insulator-metal transition, specifically ad-
justable and possible to change electrical and magnetic properties 
of BN nanostructures. Furthermore, the preferential doping was 
found to occur at the sites more vulnerable to electron beam ir-
radiation.

In this work, motivated by the discussion above, we employ a 
simple analytical procedure based on the Born approximation and
T matrix to describe electronic phase transition from insulator to 
semimetallic in impurity-infected BNNRs using the tight-binding 
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Fig. 1. (Color online) (a) Schematic view of an ABNNR with width 
√

3na0 (a0 � 2.5 Å
denotes the interatomic distance between boron and nitrogen atoms) given by 2n
atoms. The black bold dashed lines delimit the unit cells of the system and a = 3a0

is the respective unit cell width. Periodic boundary conditions are also applied in 
the vertical direction. Furthermore, the band structure for the infinitely long BNNR 
in x-direction is plotted with (b) n = 10 width to show the insulating phase of 
BNNRs (EF is the Fermi energy and Eg/t presents the normalized energy band gap).

model Hamiltonian and the Green’s function method. The sys-
tem is subjected to charged impurities in the whole finite ribbon 
randomly neglecting the location of substituted impurity. Further-
more, the kind of impurity atoms is not important in our study in 
contrast to other studies and only two impurity concentration and 
impurity scattering potential factors play key roles in phase transi-
tions. In particular, we study the effects of impurity concentration, 
impurity scattering potential, and the ribbon width on the density 
of states (DOS) of ABNNRs.

The sequence adapted in this paper is as follows: In Sec. 2, we 
give details about the effective boron-nitride Hamiltonian model 
and Green’s functions. In Sec. 3, we describe the electronic self-
energies induced by impurities and DOS. We show the numerical 
results in Sec. 4 and finally our main conclusions are summarized 
in Sec. 5.

2. Theoretical Model and Green’s functions

To proceed, we construct the following effective single-orbital 
nearest neighbor tight-binding model in the basis {|A (Boron), kx,

ky〉 = ψA(kx, ky) and |B (Nitrogen), kx, ky〉 = ψB(kx, ky)}, where 
well captures all the low-energy features of electronic states of 
nano boron-nitride ribbons. Here, we consider an ABNNR with 
translational symmetry along the x-axis, as shown in Fig. 1(a). 
Thus, the simple Hamiltonian can be written as

Ĥ = −εA
0

∑
i

â†
i âi − εB

0

∑
i

b̂†
i b̂i − t

∑
〈i, j〉

[â†
i b̂ j + H.c.], (1)

where ĉi(ĉ†
i ) with ĉ = â or b̂ implies the on-site annihilation (cre-

ation) operator for electrons at the i-th site of the honeycomb 
lattice in the sublattice A or B. The coefficient t � 3 eV [16] is 
the hopping parameter between nearest neighbor atoms belong-
ing two sublattices A and B. εA

0 and εB
0 are the on-site ener-

gies of two different sublattice atoms (boron and nitrogen), which 
εA

0 − εB
0 = 4.5 eV [20,21]. The H.c. in the third term stands for the 

Hermitian conjugate. According to Fig. 1(a), each index site i con-
tains the unit cell that can be labeled with index m and sublattice 
Al and Bl (l ∈ [1, n]). With the help of

ĉ†
A(B),kx,ky

∝
∑

m

n∑
l=1

eikxxmψA(B)(l,ky)ĉ†
A(B),l,m,

in operator form of suggested basis sets, one can obtain the elec-
tronic spectrum of the system [22]. In this relation, xm denotes the 
position of m-th unit cell along the x-axis. Also, ĉ†

A(B),l,m creates an 
electron in the pz-orbit in the sublattice A (B) with position l along 

the width of ribbon (y-axis) on the m-th unit cell. In the work of 
Zheng et al. [22], the hard-wall boundary conditions allows us to 
choose

ψA(B)(l,ky) = sin

(√
3kya0

2
l

)
,

with discretized wave-vector

ky = 2√
3a0

zπ

n + 1
, z = 1,2,3, ...n

Rewriting the Hamiltonian in terms of ĉ†
A(B),kx,ky

operators

Ĥ =
∑

kx,z,ν=±
Eν(kx, z)ĉ†

kx,z,ν
ckx,z,ν ,

where

ĉ†
kx,z,ν

=
√

2

2

(
ĉ†

A,kx,z
+ ν

√
φ∗(kx, z)

φ(kx, z)
ĉ†

B,kx,z

)
,

the band energy dispersion is given by

Eν(kx, z) = εA
0 + εB

0

2
+ ν

√√√√|φ(kx, z)|2 +
(

εA
0 − εB

0

2

)2

, (2)

where φ(kx, z) = −t[2eikxa0/2 cos

(√
3kya0

2

)
+ e−ikxa0 ]. The on-site 

energies εA
0 = 2.25 eV and εB

0 = −2.32 eV are taken into account 
individually [23]. The momentums (kx, ky) belong to the first Bril-
louin zone (FBZ) of BNNR structure. Since unit cell of BNNR in-
cludes 2n atoms, the Green’s functions can be written as a 2n × 2n
matrix. In the Matsubara formalism [24], each element of the 
Green’s function matrix and its Fourier transformation are defined 
by

G0
αβ(kx, τ ) = −〈Tτ [ĉkx,α(τ )ĉ†

kx,β
(0)]〉,

G0
αβ(kx,iωF ) =

1/kB T∫
0

eiωF τ Gαβ(k, τ )dτ ,
(3)

where α, β refer to each sublattice atoms A and B and τ is 
the imaginary time. Also, ωF = (2F + 1)πkB T is the Fermionic 
Matsubara frequency. Therefore, elements G0

αβ(kx, iωF ) in the 
reciprocal-space can be easily calculated. Once a solution has been 
achieved, the DOS in order to study the electronic phase transition 
from insulator to semimetallic in BNNRs can be expressed in the 
following.

3. Electronic self-energy and DOS

Suppose that now we apply a electron-impurity interaction 
within the tight-binding model by addition of the local energy 
term, given by

Ĥe-i =
∑

q

νi[â†
qâq + b̂†

qb̂q] (4)

where the induced momentum q by impurities belongs to the FBZ. 
According to the Born approximation in the scattering theory and 
using T matrix [24,25], the electronic self-energy matrix elements 
of disordered BNNR system in the presence of finite but small den-
sity of impurity atoms, ni = Ni/Nc, can be obtained as

�αβ(q,iωF ) = niνi

1 − νi
Nc

∑
kx∈FBZ G0

αβ(kx,iωF )
(5)
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