
JID:PLA AID:24922 /SCO Doctopic: Mathematical physics [m5G; v1.229; Prn:18/01/2018; 16:45] P.1 (1-7)

Physics Letters A ••• (••••) •••–•••

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Non-autonomous matter-wave solitons in hybrid atomic–molecular 

Bose–Einstein condensates with tunable interactions and harmonic 

potential

Deng-Shan Wang a,b,∗, Jiang Liu b,∗∗, Lizhen Wang c

a School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China
b Department of Systems Science, Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
c Center for Nonlinear Studies and School of Mathematics, Northwest University, Xi’an 710069, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 September 2017
Received in revised form 10 January 2018
Accepted 11 January 2018
Available online xxxx
Communicated by V.A. Markel

Keywords:
Matter-wave solitons
Atomic–molecular Bose–Einstein 
condensates
Similarity transformation
Harmonic potential

In this paper, we investigate matter-wave solitons in hybrid atomic–molecular Bose–Einstein condensates 
with tunable interactions and external potentials. Three types of time-modulated harmonic potentials are 
considered and, for each of them, two groups of exact non-autonomous matter-wave soliton solutions of 
the coupled Gross–Pitaevskii equation are presented. Novel nonlinear structures of these non-autonomous 
matter-wave solitons are analyzed by displaying their density distributions. It is shown that the time-
modulated nonlinearities and external potentials can support exact non-autonomous atomic–molecular 
matter-wave solitons.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Recent exciting achievement of creating a molecular Bose–
Einstein condensate (BEC) opens the challenge to find new quan-
tum matter states [1–4]. Magnetic Feshbach resonances [5] and 
photoassociation [6] provide a tool to investigate the many-body 
properties of ultracold gases when converting atom pairs into 
molecules.

To describe the atomic–molecular BEC system [7,8], we use the 
three-dimensional coupled Gross–Pitaevskii (GP) equations based 
on mean field theory [9]⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ih̄ ∂�a
∂t = (− h̄2�

2Ma
+ Va(r, t) + Gaa|�a|2 + Gam|�m|2)�a

+ χ�∗
a�m,

ih̄ ∂�m
∂t = (− h̄2�

2Mm
+ Vm(r, t) + Gma|�a|2 + Gmm|�m|2

+ h̄δ)�m + χ
2 �2

a ,

(1)

where h̄ is Planck’s constant, r = (x, y, z) is three-dimensional co-
ordinate, � = ∂2

∂x2 + ∂2

∂ y2 + ∂2

∂z2 , �a = �a(r, t) and �m = �m(r, t) are 
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the atomic and molecular wave functions, respectively, Ma and Mm

are the masses of an atom and a molecule with Mm = 2Ma , and 
Gaa, Gam, Gma and Gmm are the interparticle interaction strengths 
with Gma = Gam . Parameter χ is the parametric coupling coeffi-
cient between atoms and molecules which is determined by the 
hyperfine interaction that flips the electronic and nuclear spins 
of one of the colliding atoms [9]. Parameter δ characterizes Ra-
man detuning for a two-photon resonance. The trap potentials 
for atoms and molecules are given by Va(r, t) = 1

2 Maωa(ω
2
x x2 +

ω2
y y2 + ω2

z z2) and Vm(r, t) = 1
2 Mmωa(ω

2
x x2 + ω2

y y2 + ω2
z z2), re-

spectively, where ωa is the angular frequency in the trans-
verse direction and (ωx, ωy, ωz) are defined as the ratio be-
tween the angular frequency in the (x, y, z)-direction and the 
angular frequency in the transverse direction. Moreover, the to-
tal number of particles is normalized such that N = ∫

(�a�
∗
a +

2�m�∗
m)dr.

Introducing the scales characterizing the trapping potential, the 
length, time, and wave functions are scaled as

r̃ = r

ah
, t̃ = ωat, �̃a(r̃, t̃) = a3/2

h√
N

�a(r, t),

�̃m(r̃, t̃) = a3/2
h√

N
�m(r, t), (2)
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with ah = √
h̄/Maωa . After the tilde is removed, the three-

dimensional coupled GP equation (1) is reduced to a dimensionless 
form as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i ∂�a
∂t = (−�

2 + V (r, t) + gaa|�a|2 + gam|�m|2)�a

+ γ �∗
a�m,

i ∂�m
∂t = (−�

4 + 2V (r, t) + gam|�a|2 + gmm|�m|2 + ε)�m

+ γ
2 �2

a ,

(3)

where the external potential is V (r, t) = 1
2 (ω2

x x2 + ω2
y y2 + ω2

z z2), 
parameters ε = δ/ωa , γ = √

Nχ/(h̄ωaa3/2
h ) and gij = NGij/(h̄ωaa3

h)

with i, j = a, m.
Assume the ratios between the angular frequency in the 

(y, z)-direction and the angular frequency in the transverse di-
rection are ωy = ωz = 1. In the limit of highly elongated traps, 
i.e. ωx � 1, the tight confinement ensures that no excited states 
are available in the (y, z)-direction and thus the dynamics takes 
place along the axial direction. That is to say the atomic–molecular 
BEC is confined strongly by a harmonic potential with fre-
quency ωa and the harmonic length ah = √

h̄/Maωa in the trans-
verse direction [10,11]. Introducing the transformations �a(r, t) =
ψa(t, x)π−1/2e− y2+z2

2 and �m(r, t) = ψm(t, x)(π/2)−1/2e−(y2+z2) , 
the model for the three-dimensional atomic–molecular BEC system 
(3) is reduced to the quasi-one-dimensional coupled GP equation

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i ∂ψa
∂t = (− 1

2
∂2

∂x2 + V (x, t) + λaa|ψa|2 + λam|ψm|2)ψa

+ θψ∗
a ψm,

i ∂ψm
∂t = (− 1

4
∂2

∂x2 + 2V (x, t) + λam|ψa|2 + λmm|ψm|2 + ε)ψm

+ θ
2 ψ2

a ,

(4)

where the external potential is V (x, t) = 1
2 ω2x2 with ω = ωx , pa-

rameters θ = (2π)−1/2γ , λaa = 1
2π gaa , λam = 1

3π gam and λmm =
1
π gmm .

In the previous work, Zhang et al. [12] and Liu et al. [13] have 
examined analytically the exact solutions of the coupled GP equa-
tions with time-independent potential by similarity transforma-
tion. Recently, studies on the exact solutions of the GP equations 
with time-dependent potential have also been done [14–17]. More-
over, in a recent experiment [18], the 7Li BEC has been excited by 
the time-periodic modulation of the interaction strength via Fesh-
bach resonance. Then theoretical study on time-periodic modula-
tion of the interaction strength is further done to analyze the one-
component mean-field GP equation [19]. Motivated by these work 
[12–19], in this paper, we consider the exact solutions of the quasi-
one-dimensional coupled GP equation (4) with time-modulated 
frequency of external potential and nonlinearities, i.e. the parame-
ter coefficients ω, λaa, λam, λmm, ε and θ are functions of time t . In 
this case, the exact solutions that we obtain are non-autonomous 
matter-wave soliton solutions. In the past years, much work has 
been done to investigate various non-autonomous solitons [20–22]
in one-component nonlinear Schrödinger systems [23]. However, in 
the present letter we have found some non-autonomous matter-
wave solitons in coupled atomic–molecular BEC system.

The paper is organized as follows. In Section 2, the exact 
non-autonomous matter-wave soliton solutions of the quasi-one-
dimensional coupled GP equation are obtained. In Section 3, the 
novel nonlinear structures of the non-autonomous matter-wave 
solitons are investigated by analyzing their density distributions. 
We summarize our results in Section 4.

2. Non-autonomous matter-wave solitons

In this section, the similarity transformation is adopted to map 
the quasi-one-dimensional coupled GP equation (4) onto the cou-
pled constant-coefficient nonlinear Schrödinger equation (NLS) of 
atomic–molecular type, and some non-autonomous matter-wave 
solitons in the hybrid atomic–molecular BECs are given. Firstly, the 
complex wave functions ψa and ψm can be written as{

ψa = φa (T , X) eα1 i+β1 ,

ψm = φm (T , X) eα2 i+β2 ,
(5)

where X = b1x + b2, α2 = 2α1 = 2(F3 + F2x − F1x2), and T , b1, b2,

F1, F2, F3, β1 and β2 are functions of time t . The wave func-
tions φa(T , X) and φm(T , X) solve the following coupled constant-
coefficient NLS equation [12]⎧⎨
⎩

i ∂φa
∂T = (− 1

2
∂2

∂ X2 + gaa|φa|2 + gam|φm|2)φa + αφ∗
a φm,

i ∂φm
∂T = (− 1

4
∂2

∂ X2 + gam|φa|2 + gmm|φm|2 + σ)φm + α
2 φ2

a ,
(6)

where gaa, gam, gmm, σ and α are constants.
Substituting Eq. (5) into the quasi-one-dimensional coupled GP 

equation (4) and letting functions φa(T , X) and φm(T , X) satisfy 
Eq. (6), the terms T , b1, b2, F1, F2, F3, β1 and β2 should obey a set 
of ordinary differential equations (ODEs). With the aid of symbolic 
computation, solving these ODEs, we have

θ = α
dT

dt
e−β1 , λaa = gaa

dT

dt
e−2 β1 , λam = gam

dT

dt
e−2 β1 ,

λmm = gmm
dT

dt
e−2 β1 , ε = σ

dT

dt
,

T = C2
5

∫
e4

∫
F1dtdt + C4, F2 = C6e

∫
2 F1dt, b1 = C5e

∫
2 F1dt, (7)

F3 = −1

2
C2

6

∫
e4

∫
F1dtdt + C2, b2 = −C5C6

∫
e4

∫
F1dtdt + C1,

β2 = β1 =
∫

F1dt + C3,

where Ci (i = 1, 2, · · · , 6) are arbitrary constants and F1 solves the 
following Riccati equation

dF1

dt
− 2F 2

1 = 1

2
ω2. (8)

The transformation in Eq. (5) connects the non-autonomous 
matter-wave soliton solutions of the coupled GP equation (4)
with the exact solutions of the coupled constant-coefficient NLS 
equation (6). Thus it is important to solve the coupled constant-
coefficient NLS equation (6) and the Riccati equation (8). The vary-
ing of the scattering length and frequency of external potential 
in the coupled GP equation (4) may result in interesting dynam-
ical behaviors in the hybrid atomic–molecular BECs. The amplitude 
and width of the non-autonomous matter-wave solitons vary with 
time, which provides us a possible way to control the matter-wave 
solitons by changing experimental parameters. A recent work on 
space–time mappings [24] has been done to map two quantum 
field evolutions onto each other exactly, where they also consider 
the case of time-modulated interaction strength. The time trans-
formation technique in [24] is relevant to time transformation in 
this paper.

2.1. Three types of special external potentials

In what follows, three types of special external potentials are 
considered to investigate the dynamics of non-autonomous matter-
wave solitons in hybrid atomic–molecular BECs. From Eqs. (7)–(8)
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