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We define a new quantifier of classicality for a quantum state, the Roughness, which is given by the 
L2(R2) distance between Wigner and Husimi functions. We show that the Roughness is bounded and 
therefore it is a useful tool for comparison between different quantum states for single bosonic systems. 
The state classification via the Roughness is not binary, but rather it is continuous in the interval [0, 1], 
being the state more classic as the Roughness approaches to zero, and more quantum when it is closer 
to the unity. The Roughness is maximum for Fock states when its number of photons is arbitrarily large, 
and also for squeezed states at the maximum compression limit. On the other hand, the Roughness 
approaches its minimum value for thermal states at infinite temperature and, more generally, for infinite 
entropy states. The Roughness of a coherent state is slightly below one half, so we may say that it is more 
a classical state than a quantum one. Another important result is that the Roughness performs well for 
discriminating both pure and mixed states. Since the Roughness measures the inherent quantumness of a 
state, we propose another function, the Dynamic Distance Measure (DDM), which is suitable for measure 
how much quantum is a dynamics. Using DDM, we studied the quartic oscillator, and we observed that 
there is a certain complementarity between dynamics and state, i.e. when dynamics becomes more 
quantum, the Roughness of the state decreases, while the Roughness grows as the dynamics becomes 
less quantum.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

To determine if the system is classical or quantum is one of 
the most intriguing physics questions of the last decades. The first 
challenging question was to measure the quantum state. Much ef-
fort in this direction was made by several researchers, with many 
advances, both theoretical [1,2] and experimental [3–6]. The first 
approach to this problem was based on Ehrenfest theorem [7–16]
which states that, under certain conditions, the centroid of a wave-
packet state will follow a classical trajectory. Zurek and Paz [17,
18] argue that the quantum system is never isolated, and thus the 
dynamics of a macroscopic object is modified by the surrounding 
objects that interact with it. This is the Decoherence Approach to 
Classical Limit of Quantum Mechanics [17–25]. Up to our knowledge, 
Ballentine and collaborators [26–30] where the first to address 
the question of which classical dynamics would be reproduced by 
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Quantum Mechanics, a trajectory or an ensemble of them. Their 
response to this question was that in a coarse grain approach, the 
quantum state may behave classically if we consider an ensemble 
of trajectories. Those results were later confirmed by others [23,
24,12,22,21,25,19]. Ballentine and collaborators also argue that the 
decoherence is not necessary if we take into account the experi-
mental limitations. This is the Coarse Grained Approach to Classical 
Limit of Quantum Mechanics. In fact, both approaches are necessary, 
since there is a combination of factors that must be considered 
in order to reproduce the classical regime [25]: large actions, the 
interaction with the environment and experimental observation 
limitations. In fact, if Quantum Mechanics domain includes Clas-
sical Mechanics domain, then Quantum Mechanics must reproduce 
all classical experiments and observations, including individual sys-
tems like a planet or a star. The action of the measurement appa-
ratus on the system is closely related to the decoherence program 
[31,32,13–16], but there is a subtle difference: if we consider a 
situation where the action of the environment is negligible, the 
system is almost isolated, and if we perform continuous simulta-
neous measurements of position and momentum, then the infor-
mation about the quantum nature of the particle will be lost and 
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the Newtonian regime is achieved [33,34]. Those results can be 
summarized in a simple way: decoherence and experimental limi-
tations are responsible for achieving the Liouville classical regime, 
while the continuous monitoring of the system leads to Newtonian 
regime [33].

Despite the great advances on the Classical Limit problem, 
quantifying the degree of classicality of a quantum state is still 
an open question. In the core of the Decoherence program is the 
assumption that the environment is usually composed of a large 
number of particles, thus, due to the thermodynamic limit, the 
environment (thermal bath) is essentially classical [35,36]. Para-
doxically, it has been shown that an interaction with one degree of 
freedom system can lead the system to behave as it was classical, 
an example of a small quantum system whose classical counter-
part is chaotic and able to produces decoherence-like behavior 
[37]; similar results can be found in references [38–41]. Oliveira 
and Magalhães [21] have shown that a single degree of freedom 
system is, in the context of decoherence, equivalent to a n-degree 
of freedom system. This equivalence is quantified by the effective 
Hilbert space size, which is “as the Hilbert-space size of the phase 
state that generates purity loss equivalently as the other particular 
environmental states”. Therefore, the effective Hilbert space size is 
a quantifier of the effectiveness of a system as an environment, i.e. 
the effectiveness of a specific model mimicking a bath is closely 
related to the classicality of such state.

Given the richness of possible physical systems and the compli-
cated structure of the quantum state space, it is no surprise that 
various notions of classicality have been defined. It seems impossi-
ble to grasp the variety of quantum states with a unique parame-
ter, especially in infinite-dimensional Hilbert spaces and, therefore, 
different classicality quantifiers should be considered as comple-
mentary rather than competitive.

In the context of harmonic oscillator potential, many classicality 
quantifiers were defined in terms of how a given state differs from 
a coherent one. These approaches follow from the postulate that 
coherent states are the only pure classical states in this situation 
[42–44]. Some examples are Mandel Q-parameter [45] and its var-
ious generalizations [46–49]. Another approach is to use the dis-
tance of the state to the closest classical state defined in Ref. [50], 
also used in Refs. [51–56]. These approaches to quantify nonclassi-
cality strongly depend on the chosen set of states used as reference 
classical states and the norms or metrics used to define the dis-
tances. Another quantifier of nonclassicality is based on the convo-
lution of the P -function with the amount of thermal noise needed 
to get a non-negative phase-space function [57]. Other measures 
are based on the entanglement potential of non-classical states 
[58–60]. In Refs. [61,62], the amount of nonclassicality is quantified 
in terms of the minimal number of coherent states that are needed 
to be superposed in order to represent the state under study. It is a 
member of a general class of algebraic measures, applying to differ-
ent notions of nonclassicality [63]. A moment-based approach was 
introduced to formulate measurable witnesses for the degree of 
nonclassicality [64]. Another approach is to determine the degree 
of nonclassicality based on the Fourier transform of the Glauber–
Sudarshan P -function, the characteristic function [65,66]. In ref-
erence [67], the authors quantify the classicality of mixed states 
from the perspective of representation theory of semi-simple Lie 
groups and give a group theoretic characterization of cases when 
it is possible to give an explicit, closed form criterion for a mixed 
state to be classical. Again, the definition of classicality is heavily 
dependent on the criteria that coherent states are the most classi-
cal states.

This approach can not be easily generalized to other potentials, 
since the coherent states of the harmonic oscillator are not attain-
able for them and, therefore, cannot serve as the reference set of 
classical states. The standard coherent states can be generalized for 

arbitrary potentials in different nonequivalent ways [68,69] and it 
is not clear which class of states should be considered classical, 
and hence it is not clear what is the best set of reference states 
for the determination of the nonclassicality of states in other po-
tentials.

The nonclassicality of quantum states phase space is also con-
nected with measures based on information theory [70–72]. In 
reference [70], Ferraro et al. show that there are distinct notions of 
classicality, and, under their considerations, that there exist quan-
tum correlations that are not accessible by information-theoretic 
arguments. Shahandeh et al. [71] show that the only known clas-
sicality criterion violated by a non-local boson sampling protocol 
[73] is the phase-space nonclassicality. Baumgratz et al. [74] inves-
tigated the quantifies of resource theory of quantum coherence. In 
reference [72] the authors investigated non-classical light, and they 
show that quantum resource [74] is the same of Glauber [75]; the 
non-classical light can be interpreted as a form of coherence, their 
procedure is based on the negativity of P -distribution.

The rest of paper is organized as follows: in section 2 we define 
a new measure, the Roughness R , and prove that it is bounded be-
tween [0, 1]. Given two states, we say that the one with a larger 
value of R is more non-classical than the other. In section 3 we 
address some important quantum states, and evaluate the Rough-
ness for each one of them. We stress that we could find, both for 
lower and upper bounds, examples of states that, in limit case, 
achieve those values. In section 4 we compare the Roughness with 
another classicality measure, the Negativity N . First, N is not a 
bounded function, so it can be more difficult to compare any two 
given states. Also, we show that there are some states with N = 0
(said to be totally classical), but with R > 0, i.e. the Roughness can 
find some quantumness in such cases. Particularly, we study a con-
vex mixing between a thermal and a Fock state, and supported by 
entropy, we show that the Roughness is more reliable, especially 
for small temperatures. At last, in section 5 we define another 
classicality measure, the Dynamic Distance Measure D . While R
evaluates the inherent quantumness of a state, D quantifies how 
much a quantum dynamics is far from a classical one. We numer-
ically evaluate both R and D for the quartic model, and we find a 
complementary behavior between them for such model.

2. Roughness: definition and bounds

The Wigner quasipropability distribution, better known as 
Wigner function, was introduced in 1932 by Eugene Wigner [76]. 
It is a real-valued function for any arbitrary quantum state �, and 
it is given by

W�(q, p) = 1

2π

ˆ

R

dx eipx
〈
q − x

2

∣∣∣�〉 〈�∣∣∣q + x

2

〉
. (1)

As a distribution, it is normalized, i.e.ˆ

R2

dq dp W�(q, p) = 1 ,

it is also common to say that it has unitary volume. The Wigner 
function is a real bounded function, with |W�(q, p)| ≤ π−1 for any 
(q, p) ∈R

2. Moreover, it is square integrable

‖W�‖2 = (W�, W�) =
ˆ

R2

dq dp [W�(q, p)]2 ≤ 1

2π
, (2)

and the equality above holds when � is a pure state [77]. The 
inner product above is the canonical one in the L2(R2) space. 
Among its properties, we emphasize the fact that W�(q, p) can 
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