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We consider the Eden model on the d-dimensional hypercubical unoriented lattice, for large d. Initially, 
every lattice point is healthy, except the origin which is infected. Then, each infected lattice point 
contaminates any of its neighbours with rate 1. The Eden model is equivalent to first passage percolation, 
with exponential passage times on edges. The Eden conjecture states that the limit shape of the Eden 
model is a Euclidean ball. By pushing the computations of Dhar [5] a little further with modern 
computers and efficient implementation we obtain improved bounds for the speed of infection. This 
shows that the Eden conjecture does not hold in dimension superior to 22 (the lowest known dimension 
was 35).

© 2018 Elsevier B.V. All rights reserved.

1. The Eden model: definitions and previous results

We consider the first passage percolation on a d-dimensional 
hypercubical unoriented lattice ([2]) as stated in [3]. Let
{α(x, y)|(x, y) ∈ edges of Zd} be a family of i.i.d random variables, 
with exponential law of parameter 1. Let n ∈ N. For a path W : 
x0 → x1 → ... → xn of neighbouring vertices, we define the passage 

time along W : α(W) =
n∑

i=1
α(xi−1, xi). The family {α(x, y)|(x, y) ∈

edges of Zd} defines a random distance, ∀(x, y) ∈ Z
d ×Z

d

D(x, y) = inf
W path from x to y

α(W).

For all t ∈R we set Bt = {x ∈ Z
d|D(0, x) ≤ t}. Richardson (1973) 

and Cox–Durett (1981) have shown that there exists a compact 
convex B∗ ⊂ R

d such that for all ε > 0

P

(
(1 − ε)B∗ ⊂ Bd

t

t
⊂ (1 + ε)B∗, for t big enough

)
= 1.

Eden conjectured that this limit form B∗ was a Euclidean ball in 
every dimension.

For all n ∈ N we note Pd
n the hyperplane of equation x1 = n

in dimension d. We note 0 the origin of the hypercube. Observe 
that D(0, Pd

n ) is the distance between the origin and the hyperplan 
Pd

n . Cox–Durrett, Hammersley and Welsh ([6]) have shown that 
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with probability 1 lim
n→+∞

D(0,Pd
n )

n
= μd

axis , for a certain μd
axis , and 

moreover that

μd
axis = inf

n→+∞
E(D(0,Pd

n ))

n
.

Dhar ([5]) obtained numerical upper bounds on E[D(0, Pd
n )] for 

small n = 1, 2 and valid for any d. This yields good upper bounds 
for μd

axis. Due to computer limitations, Dhar was not able to use 
his method in 1988 for n > 2. The aim of this letter is to detail 
how to extend his computations, and how to compute efficiently 
new upper bounds for μd

axis.
For all n ∈ N we note J d

n the hyperplane J d
n = {x1 + x2 + ... +

xd = 	n
√

d�}. Observe that J d
n is chosen so that it is at the same 

Euclidean distance from 0 as Pd
n . Therefore, if the Eden conjec-

ture were true, one would have D(0, Pd
n ) =D(0, J d

n) +o(n). For the 
same reasons as before lim

n→+∞
D(0, Jd

n)

n exists and thus we can de-

fine μd
diag as μd

diag = lim
n→+∞

D(0, Jd
n)

n . Couronné, Enriquez and Gerin 

([3]) found an numerical lower bound on μd
diag (in fact, the same 

result also appears in a different form in [4]):

μd
diag ≥ 0.3313...√

d
.

This means that a lower bound on the time of infection along 
the diagonal has been found. By combining his results with Dhar, 
[3] showed that μ35

axis < μ35
diag , and thus that the limit shape of the 

infection B∗ is not an euclidean ball in dimension 35. In this letter 
we extend Dhar’s method and use [3] lower bound to prove that 
μ22

axis < μ22
diag .
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Fig. 1. The cluster C (in blue) and the set of perimeter bounds S (in red). (For 
interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)

Theorem 1. μ22
axis < μ22

diag . In particular the limiting shape B∗ is not an 
Euclidean ball, and the Eden conjecture is false in dimension 22.

2. Dhar’s strategy for Pd
1

Idea Since we will push Dhar’s strategy a little further, we first 
detail the idea introduced in [5]. To compute an upper bound for 
E([D(0, Pd

n )]), Dhar slightly modifies the model and considers a 
unidirectional infection. This means that a site in Pd

i can only con-
taminate its neighbours in Pd

i and Pd
i+1. We note τ d

n the time of 
infection from 0 to the plan Pd

n by the unidirectional infection. It 
is clear that this infection spreads more slowly than the original 
model, and therefore we obtain for every n

μd
axis ≤ E([D(0,Pd

n )])
n

≤ E[τ d
n ]

n
.

From now on, we only consider the model of unidirectional in-
fection in our computations.

2.1. Notations

We consider a d-dimensional infection. Let T (C) = E(τ d
1 |B0 =

C) be the expected waiting time before the infection reaches Pd
1

starting from an infected cluster C in Pd
0 (and the other sites are 

healthy). For a cluster C ⊂ Pd
0 of i sites, we define S its set of 

perimeter edges (see Fig. 1). As stated in [5] we have

|S| ≥ 2(d − 1)i
d−2
d−1 � := si . (1)

For an edge e = (x, y) such that x ∈ C and y /∈ C , we set 
v+(e) = y (i.e. v+(e) is the endpoint of e which is not in C ). We 
define Ti = max

|C |=i
T (C).

2.2. Recursive inequality

Let t1 be the time at which the first contamination occurs. At 
time t1, a site in cluster C contaminates either one of its neigh-
bours in Pd

0 or one of its neighbours in Pd
1 (see Fig. 2). The total 

number of such “susceptible” sites is given by |S| + i, it follows 
that t1

def= min{z1, . . . , z|S|+i} where zi ’s are i.i.d. passage times, i.e.
t1 is distributed as an exponential r.v. with mean 1/(|S| + i). Using 
the same argument we have:

Ti ≤ 1

i
. (2)

At time t+
1 , the new infected site x is uniformly distributed among 

the |S| + i possibilities. If x ∈ Pd
1 then τ1 = t1. If x ∈ Pd

0 , then the 
infection goes on, starting from configuration C ′ = C ∪ {x}. Because 
of the memoryless property of the exponential distribution, we 
have the Markov property

Fig. 2. Example of infection. In red the starting cluster C . (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version 
of this article.)

T (C) − t1 | {x is infected at time t1} def= T (C ∪ {x}).
Therefore we obtain

T (C) = E (t1|B0 = C)︸ ︷︷ ︸
1

|S|+i : min of |S| + i exponential r.v

+E

(
τ d

1 − t1

∣∣∣B0 = C
)

= 1

|S| + i
+

∑
e leaving C

E

(
τ d

1 − t1

∣∣∣B0 = C, Bt1 = C ′)
× P

(
C ′ = C ∪ v+{e}∣∣B0 = C

)
= 1

|S| + i
+

∑
e leaving C
v+{e}∈P0

E

(
τ d

1 − t1

∣∣∣B0 = C, Bt1 = C ′)

× P
(
C ′ = C ∪ v+{e}∣∣B0 = C

)
+

∑
e edge leaving C

v+{e}∈P1

E

(
τ d

1 − t1

∣∣∣B0 = C, Bt1 = C ′)︸ ︷︷ ︸
0 : τd

1 =t1 since we have reached P1

× P
(
C ′ = C ∪ v+{e}∣∣B0 = C

)
= 1

|S| + i
+

∑
e edge leaving C

v+{e}∈P0

E

(
τ d

1 − t1

∣∣∣B0 = C, Bt1 = C ′)︸ ︷︷ ︸
E

(
τd

1

∣∣∣B0=C ′
)

by Markov property

× P
(
C ′ = C ∪ v+{e}∣∣B0 = C

)︸ ︷︷ ︸
1

|S|+i : choice of one edge among |S|+i

= 1

|S| + i

⎛
⎝1 +

∑
e edge leaving C

T
(
C ∪ v+{e})

⎞
⎠ .

We have

T (C) ≤ 1 + |S| Ti+1

|S| + i
. (3)

The right-hand side is decreasing in |S| and |S| ≤ si thus

Ti ≤ 1 + si T i+1

si + i
, (4)

which is inequality (8) in [5] (note a small misprint in Dhar’s in-
equality (8)). This recursive inequality and a rough bound on Tn

leads to a tight bound on T1:

E(τ d
1 ) = T1 ≤ 1 + s1T2

1 + s1
≤ 1 + s1

1+s2 T3
2+s2

1 + s1
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