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The exit problem in the framework of the large deviation theory has been a hot topic in the past 
few decades. The most probable escape path in the weak-noise limit has been clarified by the 
Freidlin–Wentzell action functional. However, noise in real physical systems cannot be arbitrarily small 
while noise with finite strength may induce nontrivial phenomena, such as noise-induced shift and 
noise-induced saddle-point avoidance. Traditional Monte Carlo simulation of noise-induced escape will 
take exponentially large time as noise approaches zero. The majority of the time is wasted on the 
uninteresting wandering around the attractors. In this paper, a new method is proposed to decrease 
the escape simulation time by an exponentially large factor by introducing a series of interfaces and by 
applying the reinjection on them. This method can be used to calculate the exit location distribution. It 
is verified by examining two classical examples and is compared with theoretical predictions. The results 
show that the method performs well for weak noise while may induce certain deviations for large noise. 
Finally, some possible ways to improve our method are discussed.

© 2018 Published by Elsevier B.V.

1. Introduction

Noise is usually considered to be annoying and may be ig-
nored in most of the cases. However, during the past few decades, 
it has exhibited incredible roles on the phenomena of stochastic 
resonance (SR) [1] and coherence resonance (CR) [2], which has 
aroused broad interest in a variety of disciplines. SR shows that 
under some certain strength of noise, the amplitude of the exter-
nal signal can be significantly enhanced. On the other hand, even 
for arbitrarily small noise, the response can be carried away from 
the asymptotic stable equilibrium position for sufficiently large 
time [3]. The latter can be of great relevance to the reliability of 
engineering structures on the problem of first passage failure [4]. 
In the framework of large deviation theory, Freidlin and Wentzell 
[3] applied the concept of action functional attached to each sam-
ple path to investigate the exit problem. They showed that in the 
weak-noise limit, the exit from a domain must take place along 
an extremal of the action functional with overwhelming probabil-
ity. In other words, for sufficiently small noise, the escape paths 
rarely happen, but when they escape, the paths escape with high 
probability along the pathway that is least unlikely. That makes 
rare events predictable and noise less noisy. This elegant theory 
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has also been verified by abundant experiments by Dykman, Mc-
Clintock and their coworkers [5–7].

To accurately depict the whole exit process, the probability den-
sity function, which is the solution of the corresponding Fokker–
Planck–Kolmogorov (FPK) equation, should be solved. This is not 
always an easy task even for low dimensional dynamical systems. 
Analytical results can only be obtained under some restrict circum-
stances, e.g. detailed balance or generalized stationary potential 
[8]. Thus, other approximation methods should be introduced to 
uncover some characteristics of a specific exit problem. These char-
acteristics include most probable escape path (MPEP), mean first 
passage time (MFPT), exit location distribution (ELD), etc. Dykman 
et al. [5] defined the prehistory probability density to describe the 
distribution of paths ending at the final state from which they 
evolve the system backwards in time. The ridge along the top of 
the distribution of this quantity corresponds to the MPEP of the 
given system. The action plot method [9] is introduced by Beri et 
al. which is actually a topological method which enumerates the 
trajectories starting from a small neighboring area of the initial po-
sition. The trajectory with least action will be chosen as the MPEP. 
Other methods such as the geometric minimum action method 
(gMAM) [10] and the ordered upwind method (OUM) [11] are also 
very efficient in calculating the MPEP. These methods have been 
shown for accuracy and consistency in the excitable system [12]. 
In real physical systems, the noise strength cannot be arbitrarily 
small. The MPEP and ELD may be modified for finite noise inten-
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Fig. 1. Illustration of the probability evolution method. Left panel: the probability evolution example. The superscript represents the label of the interface and the subscript 
represents the point on the interface. The blue, green and red patches represent the transition probability distribution from the point in the previous interface to the next 
interface. Right panel: the sampling paths between the interfaces λi . The dashed arrow represents the reinjection. Details are in the text. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

sities, e.g. noise-induced shift [13,14] and saddle-point avoidance 
[15].

To obtain the exit location distribution for finite noise strengths, 
if the explicit theoretical expression cannot be calculated, direct 
Monte Carlo (brute force) simulation may be a good candidate 
which first comes to one’s mind. However, when noise is small 
enough, the MFPT grows exponentially as noise approaches zero 
[16]. As a matter of fact, one is forced to waste considerable time 
on uninteresting dynamical behaviors until the final escape hap-
pens. Researchers have been looking for methods to accelerate the 
process. In order to speed up the sampling process, Allen et al. 
[17] presented the forward flux sampling (FFS) technique first ap-
plying in biochemical networks. This method employs several non-
intersecting interfaces in phase space between the initial and final 
states and generates rare paths in a ratchetlike manner [18]. By us-
ing similar ideas, the barrier method [19] and milestoning [20–23]
also apply interfaces to accelerate simulations. Glowacki et al. [24]
introduced an even simpler method named boxed molecular dy-
namics which can efficiently calculate the free energy profiles. 
These methods are very popular in molecular dynamics (MD) sim-
ulations. Based on the knowledge of the MPEP in theory in the 
weak-noise limit, Beri et al. [14] used the dynamic importance 
sampling (DIMS) to keep the trajectory on the stable manifold of 
the MPEP whenever the trajectory leaves a small neighborhood of 
it. Crooks and Chandler [25] realized another side of the coin by di-
rectly sampling the noise process. Recently, Han et al. [26] applied 
the generalized cell mapping (GCM) method to the exit location 
distribution problem which showed quite satisfactory agreement 
between the theory and numerical simulation.

In this paper, we propose a method named as probability evo-
lution method (PEM) to calculate the ELD by combining the advan-
tages of the FFS method and the fast Monte Carlo simulations used 
by Bandrivskyy et al. in Ref. [27]. The structure of this paper is as 
follows. In Section 2, the PEM is illustrated and is compared with 
previous methods. It is applied to two classical examples in Sec-
tion 3 and is validated by theoretical results. Finally, discussions 
and conclusions are given in Section 4.

2. Method

As is in the FFS method, PEM also applies several nonintersect-
ing interfaces between the initial (equilibrium points, limit cycles, 

chaotic attractors, etc.) and final (saddle points, limit cycles, chaotic 
saddles, etc.) states. Different to the FFS method, the calculation 
between different interfaces is independent and the sample paths 
are not necessary to be reserved. The detailed process goes as fol-
lows. We take the stable equilibrium point being the initial state 
as an example. As is in Fig. 1, we start N1 samples from the equi-
librium and only record the final position of the path at the first 
interface λ1. The transition probability distribution (TPD) can be 
calculated as P

(
x(1)|x(0)

)
(the superscripts represent the label of 

the interfaces). By starting Ni+1 samples at each point of the in-
terface λi , say the kth point x(i)

k , for each sample, whenever the 
path crosses λi due to relaxation, it will be reinjected back to the 
initial position x(i)

k [see the dashed arrow in Fig. 1]. As above, the 
final position of the path at λi+1 will be recorded. The TPDs for all 
the points from λi to λi+1 can be obtained as P

(
x(i+1)|x(i)

)
. Note 

that P
(
x(i+1)|x(i)

)
is a matrix and each row is a TPD of a point 

in λi to the interface λi+1. By using the reinjection, the time cost 
for a point to reach the next interface or boundary can be reduced 
by an exponentially large factor as stated in Ref. [27]. It should 
be remarked that this manipulation will induce errors since paths 
may go across the interface several times before they finally reach 
the next one. However, for small noise intensities, the error can be 
reduced because paths other than the MPEP shrink as the noise in-
tensity decreases. In other words, the dispersion of the prehistory 
probability density shrinks with the decreasing noise [5,28,29]. In 
the end, the TPD from the initial to final state is obtained as fol-
lows:

P
(

x(end)|x(0)
)

=
n∏

i=0

P
(

x(i+1)|x(i)
)

(1)

where n is the number of the interfaces while i = 0 and i = n + 1
represent the initial and final states, respectively.

Apart from the reduction of the time cost by an exponentially 
large factor, the direct advantage of this method is the indepen-
dence of the calculation for the TPD between different interfaces 
and between different points. It’s the most essential difference be-
tween FFS and PEM, whereby for the former, the sample paths 
are allowed to step across the previous interface without the rein-
jection and the sample paths are fully recorded. So for FFS, the 
recorded information is the whole pathway. While for PEM, the 
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