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Complementarity and nonlocality are two characteristic traits of quantum physics that distinguish it 
from classical physics. In this paper, for the two-qubit case, we see that the complementarity between 
global and local observables in Bell’s experiment sets a decisive foundation for the nonlocality of 
composite systems. We use the Hilbert–Schmidt norm on the commutator of two observables to 
quantify complementarity between them. Based on the CHSH experiment, we define a measure of 
complementarity Md for the two-qubit case, and extend it to two-qudit systems. Furthermore, we obtain 
an upper bound on Md that scales linearly in the Hilbert space dimension of the qudit.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Quantum theory was conceived, in the early twentieth century, 
to explain physical phenomena observed at atomic and sub-atomic 
scales which classical physics could not account for. After a cen-
tury, it has become a full-fledged fundamental theory of nature 
at the microscopic level. Since its advent, it has continuously sur-
prised us, by showing to us what can never be expected in the 
classical domain. Among several seminal developments, comple-
mentarity [1] and nonlocality [2] are eminent concepts. The notion 
of complementarity has been used in a variety of ways, denot-
ing different concepts and relationships [3]. The complementarity 
principle restricts joint measurement of certain physical observ-
ables in quantum mechanics. It refers to the situation in which 
two observables cannot have definite values simultaneously. Bohm 
refers complementarity to pairs of variables by stating [4]: at 
the quantum level, the most general physical properties of any system 
must be expressed in terms of complementary pairs of variables, each 
of which can be better defined only at the expense of a correspond-
ing loss in the definition of the other. The wave-particle duality of 
a quantum system is a well-known instance. In this paper, by 
complementarity we mean the non-commutativity of two quan-
tum observables, [X, Y ] = XY − Y X �= 0. For example, in quantum 
mechanics, position and momentum of a physical system are com-
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plementary observables. It is believed that a pair of complemen-
tary observables cannot be observed or measured precisely at the 
same moment. However, there are works where it has been shown 
that complementary observables can be measured simultaneously 
[5–7]. On the other hand, nonlocality—an exotic feature of quan-
tum physics—has proved an indispensable resource for quantum 
information processing tasks, including communication and com-
putation [8–10]. Phenomena like quantum teleportation [11] and 
superdense coding [12], which are not observed in the classical do-
main, rely heavily on the nonlocality feature of quantum mechan-
ics. It is well-known that jointly measurable observables cannot 
lead to a violation of any Bell inequality. And authors in [13] have 
shown that any pair of incompatible observables can be used to vi-
olate a Bell inequality. On the other hand, it was shown in [14] that 
“degree” of complementarity plays a role in determining the quan-
tum nonlocality. So, it’s natural to explore and discuss the connec-
tion between complementarity and nonlocality. It should be noted 
that in the case of binary observables, commutators and anticom-
mutators of observables appear in the square of the Bell operator 
[2,15]. Recently, in Ref. [15], authors have proved tight tradeoffs 
between the Bell violation and commutation-based incompatibil-
ity. They found commutation-based measures a convenient way of 
expressing relations among more than two observables, and that 
this formalism recovers several previous results as extreme cases. 
Appealing advantages with the commutation-based measures are 
that they are analytic, easily computable, and have a simple physi-
cal interpretation. It is believed that the complementarity between 
global and local observables, in Bell’s experiment, leads to nonlo-
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cality of composite systems in quantum theory. The connections 
between complementarity and nonlocality has been explored by 
several authors [16–18]. Believing in the idea that nonlocality is 
a consequence of complementarity, to know how nonlocal a com-
posite system can be, it is necessary to know to what extent this 
complementarity can be. To this end, we need to define a mea-
sure of complementarity between two observables. Recall that for 
two observables X and Y , we use their commutator [X, Y ] to show 
whether they are complementary or not. In this paper, to describe 
complementarity quantitatively, we consider a norm on these com-
mutators. Norm of a quantity measures its “length”. There are a 
lot of norms defined on matrices. Among them, the family of Lp

norms is widely used. Because of finite dimension, all Lp norms 
are equivalent. Considering this and for the brevity of calculation, 
we use the L2 norm (also called the Hilbert–Schmidt norm). So, 
in the following, we use the Hilbert–Schmidt norm on the com-
mutator of two observables to quantify how complementary they 
are.

In this paper, we give a definition of complementarity based 
on the Hilbert–Schmidt norm, study its properties for arbitrary 
finite-dimensional two-party quantum systems, and seek possible 
connection between complementarity and nonlocality.

2. CHSH model

In this section, we briefly recall the Clauser, Horne, Shimony, 
and Holt (CHSH) version of Bell inequality [2,19–21].

2.1. Bell inequality

Quantum mechanics is a nonlocal theory in the sense that it 
violates Bell inequality—a mathematical inequality involving cer-
tain averages of correlations of measurements, derived using the 
assumptions of locality and realism. That is, quantum mechanics 
cannot be both local and realistic. Both “locality” and “realism” 
stem from classical physics. The assumption of locality means that 
the outcomes of an experiment on a system are independent of 
the actions performed on a different system which has no causal 
connection with the first. On the other hand, Einstein’s locality 
states that, even in the case of causal connection, causal influ-
ences cannot propagate faster than the speed of light. And reality 
or determinism means that experiments performed on a system 
uncover properties that are pre-existing. That is, in an experiment 
the value of any observable is pre-determined. The experimental 
setting of Bell’s test is as follows. There are two observers, Alice 
(A) and Bob (B). Each of them has two measurement settings: Ak

and Bk , (k = 1, 2). All these observables are dichotomic, i.e., they 
take values ±1. The measurement outcomes of these observables 
are governed by a joint probability distribution. The CHSH version 
of Bell inequality is expressed as

|〈A1 B1 + A1 B2 + A2 B1 − A2 B2〉| ≤ 2, (2.1)

where 〈XY 〉 = ∑
i, j xi y j p(xi, y j). This inequality is valid in any 

physical theory that is local and realistic, and where the physi-
cal observables assume the values ±1. Now, let Ak and Bk denote 
the single-qubit Hermitian operators

Ak = a(k).σ =
3∑

i=1

a(k)
i σi

Bk = b(k).σ =
3∑

i=1

b(k)
i σi,

where a(k), b(k) are unit vectors in R3, and σi are Pauli matrices. 
Recall that if Alice and Bob share the singlet, |ψ−〉AB = |01〉−|10〉√

2
, 

then quantum mechanics says that 〈Ak Bk′ 〉 = −a(k).b(k′) . For the 
choice of real unit vectors a(1) = (1, 0, 0), a(2) = (0, 0, 1), b(1) =

1√
2
(1, 0, 1), and b(2) = 1√

2
(1, 0, −1), quantum mechanics clearly vi-

olates the CHSH inequality. The operator B = A1 ⊗(B1 + B2) + A2 ⊗
(B1 − B2) in CHSH inequality (2.1) is called the Bell operator. Note 
that the Bell operator is a global (or, nonlocal) observable since it is 
an observable of the whole system. On the other hand, we can de-
fine a local observable as A(r) ⊗ B(s) = (

∑3
i=1 riσi) ⊗ (

∑3
j=1 s jσ j), 

where r and s are unit vectors in R3. The Bell operator, in gen-
eral, does not commute with the local operator. Then, it is natural 
to use a norm on the commutator of these observables to quantify 
how complementary they are. In this paper, we use the Hilbert–
Schmidt norm of operators to quantify it. The Hilbert–Schmidt
norm is unitary invariant with respect to its argument. For the Bell 
operator B, the quantity

MB = sup
r,s

‖ [B, A(r) ⊗ B(s)] ‖2, (2.2)

where r and s run over the unit spherical face of R3, quantifies 
the maximal “amplitude” of complementarity of the Bell operator 
with the local observable.

2.2. Generalized Bell operators for two-qubit case

In the typical CHSH setting, Alice and Bob separately measure a 
spin along some direction each time. And for a single qubit, non-
trivial observables are only spins. Considering this, we define the 
following operator for two qubit system

A =
3∑

i, j=1

αi jσi ⊗ σ j, (2.3)

where αi j ∈ R and σi is the canonical Pauli matrix. Since this is 
an extension of the Bell operator, we call it the generalized Bell 
operator (this can be viewed as a correlation tensor!). With this 
development, we are interested in computing the following quan-
tity

M = sup
r,s,αi j

‖ [
3∑

i, j=1

αi jσi ⊗ σ j, A(r) ⊗ B(s)] ‖2, (2.4)

where αi j ∈ R and unit vectors r, s run over all possible choices. 
However, we demand M to be bounded. For this, we normalize 
αi j : 

∑3
i, j=1 α2

i j = 1. Note that due to the Bloch ball structure, for 
any single-qubit spin operator A(r) = ∑3

i=1 riσi , we can always 
find a unitary operator U such that A(r) = Uσ3U . Then for any 
operator A on the two-qubit system, and single-qubit spin oper-
ators A(r) and B(s), we can find single-qubit unitary operators U
and V such that

‖ [A, A(r) ⊗ B(s)] ‖2

= ‖ [A, U ⊗ V (σ3 ⊗ σ3)U † ⊗ V †] ‖2

= ‖ U † ⊗ V †[A, U ⊗ V (σ3 ⊗ σ3)U † ⊗ V †]U ⊗ V ‖2

= ‖ [U † ⊗ V †AU ⊗ V ,σ3 ⊗ σ3] ‖2 . (2.5)

Let A be the generalized Bell operator (2.3). Since Pauli matri-
ces {σi}3

i=1 are traceless, hermitian and orthogonal with tr(σiσ j) =
2δi j , therefore {Uσi U †}3

i=1 are also traceless, hermitian and orthog-
onal. Furthermore, when
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