
JID:PLA AID:24910 /SCO Doctopic: Nonlinear science [m5G; v1.227; Prn:9/01/2018; 10:02] P.1 (1-6)

Physics Letters A ••• (••••) •••–•••

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132

Classical and quantum dynamics of a kicked relativistic particle in 

a box

J.R. Yusupov, D.M. Otajanov, V.E. Eshniyazov, D.U. Matrasulov

Turin Polytechnic University in Tashkent, 17 Niyazov Str., 100095, Tashkent, Uzbekistan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 October 2017
Received in revised form 30 December 2017
Accepted 3 January 2018
Available online xxxx
Communicated by A. Eisfeld

Keywords:
Dirac equation
Periodically kicked particle
Chaotic dynamics

We study classical and quantum dynamics of a kicked relativistic particle confined in a one dimensional 
box. It is found that in classical case for chaotic motion the average kinetic energy grows in time, while 
for mixed regime the growth is suppressed. However, in case of regular motion energy fluctuates around 
certain value. Quantum dynamics is treated by solving the time-dependent Dirac equation with delta-
kicking potential, whose exact solution is obtained for single kicking period. In quantum case, depending 
on the values of the kicking parameters, the average kinetic energy can be quasi periodic, or fluctuating 
around some value. Particle transport is studied by considering spatio-temporal evolution of the Gaussian 
wave packet and by analyzing the trembling motion.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Particle dynamics in confined quantum systems has attracted 
much attention in the context of nanoscale physics [1–3] and 
quantum chaos theory [4–6]. Usually, studies of confined quan-
tum dynamics within the chaos theory have been focused on two 
types of problems. First type deals with the analysis of the spectral 
statistics (so-called quantum chaos) by solving Schrodinger equa-
tion in confined geometries (quantum billiards) [6–9]. Second type 
deals with the quantum dynamics in periodically driven systems 
by studying average kinetic energy as a function of time [10,11].

Despite the fact that confined quantum systems are widely 
studied in the literature, most of the researches are mainly fo-
cused on the nonrelativistic systems. In this paper we address 
the problem of delta-kicked relativistic particle confined in a one-
dimensional box. Nonrelativistic counterpart of such system have 
been considered earlier in classical and quantum chaos contexts 
by considering kicked particle in infinite square well [12–14]. For 
kicked systems, the main feature of the dynamics is the diffusive 
growth of the average kinetic energy as a function of time in clas-
sical case and its suppression for corresponding quantum system. 
The latter is called quantum localization of classical chaos [10,11]. 
The dynamics of the kicked nonrelativistic system is governed by 
single parameter, product of the kicking strength and kicking pe-
riod. However, as we will see in the following, the dynamics of the 
relativistic system is completely different than that of its nonrel-
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ativistic counterpart: There is no single parameter which governs 
the dynamics.

Usually, confined relativistic quantum systems appear in par-
ticle physic models such as MIT bag model [15] and the quark 
potential models [16]. However, recent progress made in fabrica-
tion of graphene and studying its unusual properties made pos-
sible experimental realization of Dirac particle confined in one-
[17,18] and two-dimensional boxes [19–21]. Such condensed mat-
ter realization of a Dirac particle in a box can be also realized 
in graphene nanoribbon ring [24–30] or dot [22,23] which is ex-
tensively studied recently both theoretically and experimentally. 
Graphene nanoribbon is a strip of graphene having different edge 
geometries. The quasiparticle dynamics in such material is effec-
tively one-dimensional, i.e. can be described by one dimensional 
Dirac equation [17]. When its length is finite, it becomes “Dirac 
particle in a 1D box”. “Kicked” version of such system, i.e., kicked 
Dirac particle in a box can be realized, e.g., by putting it in a stand-
ing laser wave. One of such models has been recently studied in 
[18] by focusing on transport phenomena.

We note that earlier, the Dirac equation for a particle confined 
in a box was considered in detail in the Refs. [31–36]. Unlike the 
Schrödinger equation for a box, introducing confinement in the 
Dirac equation via infinite square well or box faces some difficul-
ties caused by the Klein tunneling and the electron–positron pair 
creation [37]. To avoid such complication, in the Ref. [34] the au-
thors considered the situation when confinement is provided by 
a Lorentz-scalar potential, i.e. by a potential coming in the mass 
term. Such a choice of confinement is often used in MIT bag model 
[15] and the potential models of hadrons [16]. Another way to 
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avoid this complication is to impose box boundary conditions in 
such a way that they provide zero-current and probability density 
at the box walls. In the Ref. [31] the types of the box boundary 
conditions, providing vanishing current at the box walls and keep-
ing the Dirac Hamiltonian as self-adjoint are discussed.

The paper is organized as follows. In the next section we con-
sider classical dynamics of a relativistic particle confined in a one 
dimensional box. In section 3, following the Ref. [31], we briefly re-
call the problem of stationary Dirac equation for one dimensional 
box. In section 4 we treat the time-dependent Dirac equation with 
delta-kicking potential with the box boundary conditions. In sec-
tion 5 we discuss wave packet dynamics and trembling motion. 
Finally, section 6 presents some concluding remarks.

2. Classical dynamics

Classical relativistic particles whose motion is spatially confined 
may appear in plasma [40] and astrophysical systems [41]. Con-
finement in such systems can be provided by constant electric or 
magnetic fields. Hamiltonian of a delta kicked relativistic particle 
is given by (in the units m = c = 1)

H =
√

p2 + 1 − ε cos

(
2π

λ
x

)∑
l

δ(t − lT ), (1)

where λ is the wavelength, ε and T are the kicking strength and 
period, respectively.

Classical dynamics of a relativistic particle in one-dimensional 
space is governed by Hamiltonian equations which are given as

dp

dt
= ∂ H

∂x
,

dx

dt
= −∂ H

∂ p
. (2)

Assuming that the motion of the particle is confined within the 
box of size L and solving Eqs. (2) by imposing box-boundary con-
ditions, one can analyze the classical dynamics of a relativistic 
particle confined in a 1D box. Nonrelativistic counterpart of this 
problem was studied in the Refs. [13,14], where the map describ-
ing phase-space evolution of the system is derived. Unlike the 
kicked rotor, classical dynamics of a kicked particle in a box de-
pends not only on the product of the kicking strength and period, 
but also on the number of pulse waves in the box, i.e. on the ratio 
of the wavelength to the box size [13,14]. In other words, kicked 
particle confined in a box has much larger parametric space than 
that for kicked rotor. Relativistic generalization of the map derived 
in [13] can be written as

xn+1 =
(

L + (−1)Bn
(

xn + T pn

/
√

p2
n + 1 − Sgn(pn)LBn A

))
mod L,

pn+1 = (−1)Bn pn + 2πεT

λ
sin

(
2π

λ
xn+1

)
, (3)

where Bn = [Sgn(pn)(xn + pn)/L]; [...] is the number of bounces 
of the particle between the walls during the interval between nth 
and (n +1)th kick and Sgn(...) stand for integer part and sign of the 
argument respectively. It is clear that this map (as the equations 
of motion themselves) is Lorentz invariant, since it is a discretized 
version of Eqs. (2).

Fig. 1 presents phase-space portraits (a) and the average kinetic 
energy (b) of a kicked relativistic particle in a 1D box for those 
values of the kicking parameters at which the dynamics of the 
particle is regular. For this case the average kinetic energy does 

Fig. 1. Phase-space portrait (a) and the time-dependence of the average energy vs 
the number of kicks (b) for the classical system. The kicking strength ε = 0.0159
and the kicking period T = 100.

Fig. 2. The same as in Fig. 1 for ε = 0.0637 and T = 100.

Fig. 3. The same as in Fig. 1 for ε = 0.1751 and T = 99.99327.

Fig. 4. (Color online.) Average kinetic energy as a function of the kicking parameters 
at the 1000th kick (logarithmic scale).

not grow in time (unlike the nonrelativistic case) and fluctuates 
around some fixed value. In Fig. 2 similar plot is presented for the 
values of the kicking parameters causing mixed dynamics. The en-
ergy in Fig. 2 (b) grows in time and the growth is suppressed after 
the certain number of kicks. In Fig. 3 phase-space portrait (a) and 
time-dependence of the average kinetic energy (b) are plotted for 
fully chaotic case. The energy grows almost monotonically for this 
case in the considered time period. This regime can be considered 
as an acceleration mode. Existence of the acceleration modes can 
be clearly seen from the Fig. 4, where the average kinetic energy 
is plotted vs kicking parameters, ε and T . Maximum values of E(t)
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