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In this note, we investigate the electromagnetic radiation emitted from a revolving point charge in a 
compact space. If the point charge is circulating with an angular frequency ω0 on the (x, y)-plane at 
z = 0 with boundary conditions, x ∼ x + 2π R and y ∼ y + 2π R , it emits radiation into the z-direction of 
z ∈ [−∞, +∞]. We find that the radiation shows discontinuities as a function of ω0 R at which a new 
propagating mode with a different Fourier component appears. For a small radius limit ω0 R � 1, all the 
Fourier modes except the zero mode on (x, y)-plane are killed, but an effect of squeezing the electric 
field totally enhances the radiation. In the large volume limit ω0 R → ∞, the energy flux of the radiation 
reduces to the expected Larmor formula.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

An accelerating charged particle emits electromagnetic radiation. If some of the spaces are compact and bounded by material walls, 
the radiation behaves differently. Some examples are microwaves propagating inside a compact waveguide, light propagating in an optical 
fiber, or black body radiation in a finite volume. A similar but slightly different situation appears in the string theory with higher dimen-
sional spaces; d = 9 spaces among which six-dimensional sub-spaces are compactified with periodic boundary conditions to describe our 
three-dimensional spaces. In string theory, we often consider D-branes, localized objects charged under the so called Ramond–Ramond 
(RR) fields (see [1,2] for reviews). There are various types of D-branes: a Dp-brane is a p-dimensional object. In the brane world scenario, 
our universe is described by a D3-brane whose motion in the six-dimensional compact space is supposed to describe the early universe 
[3–5]. In such a situation, radiations of gravitational and RR fields in a compact space are important to be investigated [6–8].

In this short note, motivated by the studies of radiations from D-branes in motion, we study electromagnetic radiations from a revolving 
point charge in a compact space.1 When the size of the compact spaces is smaller than the typical wave length of radiation, one may 
expect that the radiation will be suppressed. The purpose of the note is to check whether it is correct or not. In the next section 
we introduce our setup and provide useful formulas to calculate the radiation. We especially evaluate the retarded Green’s function in 
compact spaces. In section 3 we calculate energy flux of radiation which is defined at far infinity away from the revolving charge in the 
non-compact direction. The radiation has a discontinuous behavior as the size of the compact directions R is varied. It is also necessary to 
regularize divergences associated with resonances in the compact space, which also cause the discontinuities. We summarize the results 
in section 4. In Appendix, we list exact expressions of the electric and magnetic fields without using an approximation d � R where d is 
the radius of the circular motion of a charged particle.

2. Setup and Green’s function

The setup studied in this note is as follows. We consider four-dimensional space–time with time t and space coordinates xi , i = 1, 2, 3. 
The first and the second spacial directions are compactified by imposing the periodic boundary conditions with radius R ,

x1 ∼ x1 + 2π R, x2 ∼ x2 + 2π R, (1)
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1 Unruh radiation in a compact space has been discussed in [9].
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Fig. 1. The motion of the point charge.

and the other direction z is extended to infinity. We introduce a point charge q revolving in the x1–x2 plane with a constant angular 
frequency ω0 (see Fig. 1). The motion of the point charge is described by a vector z(t) with the components

z1(t) = d cos(ω0t), z2(t) = d sin(ω0t), z3(t) = 0, (2)

where d is the radius of the orbit. We assume that the motion is non-relativistic. The energy flux of radiation is defined at x3 = +∞
(or −∞) as

W =
〈 2π R∫

0

dx1dx2 lim
x3→∞

(E1 B2 − E2 B1)

〉
, (3)

where E = (E1, E2, E3) and B = (B1, B2, B3) are the electric and magnetic fields respectively, and the bracket means time averaging. The 
quantity E1 B2 − E2 B1 is nothing but the third component of the Poynting vector. We are using the unit system of ε0 = μ0 = 1 and c = 1. 
In a non-compact case, this energy flux is given by

Wnonc = ω4
0q2d2

12π
, (4)

which is one half of the radiation of the Larmor formula [10]. In the following we focus on the ratio f := W /Wnonc to represent the effect 
of the compactness of the space.

The electromagnetic field can be obtained by solving the Maxwell’s equations in the Lorenz gauge condition ∂φ/∂t + ∇ · A = 0,

�φ(t,x) = ρ(t,x), (5)

�A(t,x) = i(t,x), (6)

where φ and A are scalar and vector potentials. The charge density ρ(t, x) and the current density i(t, x) are described as

ρ(t,x) = qδ3(x − z(t)), (7)

i(t,x) = q
dz(t)

dt
δ3(x − z(t)), (8)

for a non-relativistically moving charged particle. In the following of this section, we derive a general expression of the Green function in 
a semi-compact space with the periodic boundary condition. Namely we do not specify the concrete settings of ρ and i in (7) and (8) for 
the moment. Solutions of the wave equations, eqs. (5) and (6), are obtained by using the retarded Green’s function Gret(t, x),

φ(t,x) =
∫

dt′
∫

d3x′ Gret(t − t′,x − x′)ρ(t′,x′), (9)

A(t,x) =
∫

dt′
∫

d3x′ Gret(t − t′,x − x′) i(t′,x′). (10)

The electric and magnetic fields are obtained by

E = −∇φ − ∂

∂t
A, B = ∇ × A, (11)

respectively.
Now we obtain the retarded Green’s function with the boundary conditions (1). In the non-compact case, the retarded Green’s function 

is given by

Gret
nonc(t,x) = 1

4π

1

|x|δ(t − |x|)θ(t) =
∫

dω

2π
e−iωt

∫
d3k

(2π)3

1

|k|2 − ω2 − iε · sgn(ω)
eik·x, (12)

which satisfies

�Gret
nonc(t,x) = δ(t)δ3(x). (13)

Here, sgn(ω) is the sign function of ω and ε > 0 is an infinitesimal number which specifies the integration contour.
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