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A linearized plane pendulum with the slowly varying mass and length of string and the suspension 
point moving at a slowly varying speed is presented as an example of a simple 1D mechanical system 
described by the generalized harmonic oscillator equation, which is a basic model in discussion of the 
adiabatic dynamics and geometric phase. The expression for the pendulum geometric phase is obtained 
by three different methods. The pendulum is shown to be canonically equivalent to the damped harmonic 
oscillator. This supports the mathematical conclusion, not widely accepted in physical community, of no 
difference between the dissipative and Hamiltonian 1D systems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Dynamics of our world is governed and described by differ-
ential equations. Realization of this startling fact was evaluated 
by Newton as the most important discovery of his life. However, 
explicit analytical solutions of differential equations are the ex-
ception rather than the rule. This makes scientists develop special 
and approximate methods for the analysis of differential equations 
because every new step in understanding the properties of their 
solutions gives a further insight into a physical theory described 
by corresponding equations. Thus, for example, the discovery of 
adiabatic invariants of the second order differential equation with 
slowly varying parameters was an important step in the develop-
ment of quantum theory. The existence of one more remarkable 
property of this equation, the so-called geometric phase, was no-
ticed only 80 years later. Historical aspects of the development of 
ideas related to the understanding of the properties of solutions 
of differential equations with slowly varying parameters as well as 
their theoretical, experimental and applied aspects one can find in 
many reviews and books (see, for example, [1–5]).

The quantity considered in the present paper, the geomet-
ric phase, is also known as the topological or nonholonomic 
phase and often associated with the names of its pioneers: Rytov, 
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Vladimirskii, Pancharatnam, Berry, Hannay, less frequently with 
Ishlinskii (who gave the explanation of systematic gyroscope bias 
error after a long voyage), and others. In our work we consider 
this concept at the classical, non-quantum level and in what fol-
lows call it the geometric or Hannay phase. The geometric phase 
can occur both in quantum [6] and in classical [7,8] systems. This 
is not astonishing in view of the actually identical second order 
differential equations which are the time-independent Schrödinger 
equation and the Newton (or Hamilton) equation for the harmonic 
oscillator with a linear restoring force. The analogy between quan-
tum and classical phenomena is clearly seen, for example, when 
one compares the classical phenomenon of parametric resonance 
and the band character of the spectrum of quantum particle in 
a stationary periodic field: both of the phenomena are described 
by the Hill equation. This analogy was also repeatedly used in the 
study and comparison of the adiabatic dynamics of classical sys-
tems and the WKB approximation of quantum mechanics [9]. In 
mathematical terms, the geometric phase is a correction to the 
dynamical phase for the harmonic solution of a linear differen-
tial equation with the broken time-reversal invariance or, in other 
words, for the solution which describes the vibrational mode of 
motion of dynamical systems [10,11] with slowly varying parame-
ters.

In the present work we give an elementary example of mechan-
ical system illustrating the physical meaning of Hamiltonian (1)
and, in this way, the possible range of applicability of Hannay’s [7]
results. This mechanical system is a plane mathematical pendulum 
with the slowly varying mass and string length, and with the sus-
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pension point moving at a slowly varying speed. In Section 3 we 
derive the expression for geometric phase arising in this system. 
The fact of canonical equivalence between the considered pendu-
lum and a damped harmonic oscillator we show in Section 4. This 
fact is somewhat surprising from the physical point of view and 
trivial, at the same time, from the mathematical point. We discuss 
this duality at Section 5. A complex form of the GHO Hamilton 
function is presented in Appendix A. For the sake of completeness 
and readability we often appeal to already known results with ap-
propriate citation.

2. Generalized harmonic oscillator

The simplest second order equation which can be a demon-
strative example of the existence of geometric phase in classical 
adiabatic dynamics [7,8] is the equation of motion of the gener-
alized harmonic oscillator (GHO). The importance of this example 
is confirmed by the fact that scientists after Hannay [7] often re-
turned to this equation [8,11–15] using different methods for its 
analysis. The Hamiltonian of the GHO is given by

H = 1

2

(
αQ 2 + 2β Q P + γ P 2

)
, (1)

where Q and P are the canonically conjugate coordinate and mo-
mentum; α, β , and γ are the parameters of the generalized oscil-
lator. When the parameters α, β and γ are constant, the energy of 
the system is a constant of motion. For the values of α, β and γ
satisfying the inequality αγ > β2, solutions of the Hamilton equa-
tions take the form:

Q = r cos�, P = − r

γ
(β cos� + ω sin�) ,

� = ωt, ω =
√

αγ − β2. (2)

If the parameters change slowly, see Eq. (7), the motion of the 
oscillator can be approximately regarded as the periodic one of the 
form (2) with the slowly varying amplitude r and phase � both 
of which should be determined. In this case, the energy of the 
system is not conserved, but there is a new approximate conserved 
quantity, the adiabatic invariant,

I = ωr2

2γ
= E

ω
, (3)

which remains constant with (non-analytic) exponential accuracy 
�I ∼ exp(−1/t0ε) [16], where ε−1 is the characteristic time scale 
of slowly changing parameters and t0 is some constant determined 
by analytical properties of varying parameters. The phase of the 
oscillator is an ‘almost linear’ function of time. It was shown in the 
works by Hannay [7] and Berry [8] that the phase of the oscillator 
can be represented as the sum of two quantities, � = �d + �g , 
where the dynamic �d and the geometric �g phases are:

�d =
t∫
ωdt,

�g = 1

2

t∫
β

ω

(
γ̇

γ
− β̇

β

)
dt = 1

2

∫
	

β

ω

(
dγ

γ
− dβ

β

)
. (4)

The independence of the geometric phase of time follows from 
the last equation of (4), provided the adiabatic condition holds, 
and explains the name of this phase. The dependence of the phase 
on the path 	 of integration is associated with the concept of 

anholonomy. Reversing the direction of integration along the con-
tour 	 changes the sign of the geometric phase, and when the 
parameter β , which violates the time-reversal invariance of the 
Hamiltonian (1), becomes zero, the geometric phase vanishes as 
well. If the line of variation of the parameters α, β and γ is the 
closed curve 	, then the integral corresponding to the geometric 
phase can be converted by Stokes’ theorem to the surface integral 
which is also independent of the time of parameter change:

�g =
∫ ∫

S(	)

1

4ω3

(
γ dSαβ + αdSβγ + βdSαγ

)
, (5)

where dSαβ = dα ∧ dβ and similar expressions are projections 
of oriented surface elements on relevant directions. This is the 
essence of Berry and Hannay’s results in the application to the 
classical mechanics. The result (4) can be obtained [12] by averag-
ing over the ‘fast’ variable � without appealing to the action-angle 
variables, as it was originally made in Hannay’s work [7]. In more 
details this procedure is as follows: it is necessary to substitute the 
expressions (2) into the Hamiltonian equations of motion,

Ṗ = − ∂ H

∂ Q
, Q̇ = ∂ H

∂ P
, (6)

bearing in mind that the parameters α, β and γ are functions of 
time. Solving the obtained equations with respect to ṙ and �̇ and 
averaging them over the period of motion, one arrives at simple 
differential equations for α, β and γ that have the solutions given 
by the expressions (3) and (4). Another alternative method of ob-
taining the results (3) and (4) one can find in Appendix B.

Note, that the geometric phase �g stems from the non-

potential (vortex) nature of the differential form β
ω

(
dγ
γ − dβ

β

)
, 

since in general case ∂
∂γ

(− 1
ω

) �= ∂
∂β

(
β

γω

)
; in the theory of dif-

ferential forms such forms are called inexact. The Hannay phase 
cannot be calculated only on the basis of initial and final states 
of the oscillator and depends on the path connecting the start 
(αs, βs, γs) and end (αe, βe, γe) points-states of the system in 
the parameter space (α, β, γ ). For the existence of the geomet-
ric phase (see Eq. (4)), the most significant factor is the lack of 
T -invariance of Hamiltonian (1).

In spite of the simplicity, this result had a great influence on 
the subsequent development of the theory of dynamical systems 
and found numerous applications [1–5]. However, until now the 
question, which systems can be described by the Hamiltonian of 
the GHO is still open. In the work [12] it was shown that the 
Hamiltonian (1) is canonically equivalent to the Hamiltonian of 
the equation of damped harmonic oscillator. The result, on the one 
hand, is a bit surprising but, on the other hand, leaves a feeling of 
dissatisfaction. In particular, the existence of other simple counter-
parts of the GHO among well-known mechanical systems seems to 
be natural.

3. Plane mathematical pendulum

Let us consider the motion of simple plane linearized mathe-
matical pendulum with the suspension point moving with a small 
acceleration along the vertical axis O Y of the oscillation plane 
X O Y , see Fig. 1. The speed v of the suspension point as well as 
two other pendulum parameters – the mass m and the length l of 
the string – are supposed to be slowly changing functions of time 
with the characteristic scale ε−1 much greater than the period T
of harmonic oscillations of the pendulum:

εT << 1. (7)
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