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The equations for the general Darboux–Halphen system obtained as a reduction of the self-dual Yang–
Mills can be transformed to a third-order system which resembles the classical Darboux–Halphen system 
with a common additive terms. It is shown that the transformed system can be further reduced to 
a constrained non-autonomous, non-homogeneous dynamical system. This dynamical system becomes 
homogeneous for the classical Darboux–Halphen case, and was studied in the context of self-dual 
Einstein’s equations for Bianchi IX metrics. A Lax pair and Hamiltonian for this reduced system is derived 
and the solutions for the system are prescribed in terms of hypergeometric functions.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The Darboux–Halphen differential equations often referred to as 
the classical Darboux–Halphen (DH) system

ω̇i = ω jωk − ωi
(
ω j + ωk

)
, i �= j �= k = 1,2,3, cyclic ,

˙ := d

dt
, (1.1)

was originally formulated by Darboux [1] and subsequently solved 
by Halphen [2]. The general solution to equation (1.1) may be ex-
pressed in terms of the elliptic modular function. In fact Halphen 
related the DH equation in terms of the null theta functions.

The system (1.1) has found applications in mathematical physics 
in relation to magnetic monopole dynamics [3], self dual Einstein 
equations [4,5], topological field theory [6] and reduction of self-
dual Yang–Mills (SDYM) equations [7]. Recently in [8], the DH sys-
tem was reviewed from the perspective of the self-dual Bianchi-IX 
metric and the SDYM field equations, describing a gravitational in-
stanton in the former case, and a Yang–Mills instanton in the latter. 
All systems related to the DH system such as Ramanujan and Ra-
mamani system were covered, as well as aspects of integrability of 
the DH system.
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Ablowitz et al. [9,10] studied the reduction of the SDYM equa-
tion with an infinite-dimensional Lie algebra to a 3 × 3 matrix 
differential equation. This work led to a generalized Darboux–
Halphen (gDH) system which differs from the DH system by a 
common additive term. The gDH system was also solved originally 
by Halphen [11] in terms of general hypergeometric functions and 
whose general solution admits movable natural barriers which can 
be densely branched.

In this article, we discuss certain aspects related to the inte-
grability of the gDH system. Some of these features were implicit 
in the original formulation of the system but were never made 
concrete. Specifically, we show that it is possible to derive natu-
rally from the gDH system yet another reduced system of equa-
tions which satisfy a constraint. This constrained system resem-
bles a non-autonomous Euler equation similar to that derived by 
Dubrovin [12] but with non-homogeneous terms. Furthermore, we 
derive a simple Lax pair for the constrained system. The paper 
is organized as follows. In Section 2, the gDH system is intro-
duced and a constrained system is derived from it. Then the solu-
tions of both the gDH and the constrained systems are discussed. 
In Section 3, we derive following [10], the gDH system from a 
ninth-order dynamical system that is obtained as a reduction of 
the SDYM field equations equation. We provide some details in 
our derivation that were not included in earlier papers. Then we 
discuss the constrained system in the framework of a fifth-order 
system that arise as a special case of the SDYM reduction. In Sec-
tion 4, we formulate a Lax pair and a Hamiltonian for the reduced 
system introduced in Section 2.
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2. The gDH system

In this section, we introduce the gDH system for the complex 
functions ωi(t)

ω̇i = ω jωk − ωi
(
ω j + ωk

) + τ 2 , i �= j �= k = 1,2,3, cyclic .

(2.1)

The common additive term τ 2 is elaborated as

τ 2 = α2
1 x2x3 + α2

2 x3x1 + α2
3 x1x2 with xi = ω j − ωk ,

i �= j �= k, cyclic , x1 + x2 + x3 = 0 , (2.2)

where αi , i = 1, 2, 3 are complex constants. As mentioned in 
Section 1, the gDH system arises from a particular reduction of 
the SDYM equations [9,10]. They also appear in the study of 
SU (2)-invariant, hypercomplex four-manifolds [13]. In Section 3, 
we will provide a derivation of the gDH system from the SDYM 
reductions following [10].

In the following, we derive from (2.1) a reduced system of dif-
ferential equations which satisfy a constraint.

2.1. Constrained gDH system

Note that the variables xi defined in (2.2) satisfy the equations

ẋi = −2ωi xi , i = 1,2,3 , (2.3)

which are obtained from (2.1) by taking the difference of the equa-
tions for ω j and ωk . Using (2.3), the gDH equations (2.1) can be 
re-expressed as follows:

ω̇i − ωi

2

(
ẋ j

x j
+ ẋk

xk

)
= ω jωk + τ 2 .

Then by defining new variables W i , i = 1, 2, 3 via

W i := ωi√
x jxk

, i �= j �= k, cyclic , (2.4)

one obtains the system

Ẇ i = xi W j Wk + τ 2

√
x jxk

. (2.5)

It follows from (2.5) that

3∑
i=1

W i Ẇ i = W1W2W3

3∑
i=1

xi − τ 2

2x1x2x3

3∑
i=1

ẋi = 0

after using (2.4), (2.3) and the fact that x1 + x2 + x3 = 0. Thus, one 
finds that the quantity

Q :=
3∑

i=1

W 2
i = ω2

1

x2x3
+ ω2

2

x1x3
+ ω2

3

x1x2

is a constant. However, the quantity Q is not a conserved quan-
tity of (2.5), rather Q = −1 is an identity which follows from the 
definition of the variables W i in (2.4). Indeed, a direct calculation 
using x1 + x2 + x3 = 0, shows that

Q = ω2
1x1 + ω2

2x2 + ω2
3x3

x1x2x3
= ω2

1x1 + ω2
2x2 − ω2

3(x1 + x2)

x1x2x3

= x1(ω1 − ω3)(ω1 + ω3) + x2(ω2 − ω3)(ω2 + ω3)

x1x2x3

= x1x2(ω2 − ω1)

x1x2x3
= − x1x2x3

x1x2x3
= −1

Therefore, the system in (2.5) is a reduction of the original gDH 
system; the reduced system can be regarded as a third order sys-
tem for the W i satisfying the constraint Q = −1. Note that the 
DH equations (1.1) being a special case (αi = 0) of (2.1), also ad-
mits the same reduced system (2.5) as above but with τ = 0.

Remark. A third order system similar to (2.5) but without the non-
homogeneous term, was introduced in [14,15] where the authors 
derived a family of self-dual, SU(2)-invariant, Bianchi-IX metrics 
obtained from solutions of a special Painleve-VI equation. In that 
case, the vanishing of the anti-self-dual Weyl tensor and scalar 
curvature led to a sixth order system described by the classical 
DH system (1.1) coupled to another third order system. The W i
variables represented different quantities in [14,15] although they 
were defined in the same way as in (2.4). The quantity Q was a 
first integral (instead of a number) in that case, depending on the 
initial conditions for the sixth order system. This sixth order sys-
tem considered in [14,15] also admits a special reduction to the 
third order DH system when the metric is self-dual Einstein. It is 
this latter case which corresponds to the homogeneous version of 
(2.5) above with Q = −1.

Next, we discuss the solution of the reduced system via the 
solutions of the original gDH system (2.1).

2.2. Solutions

As mentioned in Section 1, Halphen [11] solved the gDH system 
and expressed its solution in terms of the general hypergeometric 
equation. Below we discuss a method of solution first given by 
Brioschi [16].

Let us first introduce a function s(t) via the following ratio:

s = ω3 − ω2

ω1 − ω2
= − x1

x3
. (2.6)

Taking the derivative of ln s in (2.6) and then using (2.3), the xi

can be written as

x1 = −1

2

ṡ

s − 1
, x2 = 1

2

ṡ

s
, x3 = 1

2

ṡ

s(s − 1)
. (2.7)

Using (2.3) once more, the gDH variables ωi can be expressed in 
terms of s, ̇s and s̈ as

ω1 = −1

2

d

dt

[
ln

(
ṡ

s − 1

)]
, ω2 = −1

2

d

dt

[
ln

(
ṡ

s

)]
,

ω3 = −1

2

d

dt

[
ln

(
ṡ

s(s − 1)

)]
. (2.8)

Substituting the above expressions for ωi into the gDH system (2.1)
yields the following third order equation for s(t)

...
s

ṡ
− 3

2

(
s̈

ṡ

)2

+ ṡ2

2

[
1 − α2

1

s2
+ 1 − α2

2

(s − 1)2
+ α2

1 + α2
2 − α2

3 − 1

s(s − 1)

]
,

(2.9)

also known as the Schwarzian equation. Equation (2.9) can be lin-
earized in terms of the hypergeometric equation as follows. Let 
χ1(s) and χ2(s) be any two linearly independent solution of the 
hypergeometric equation

χ ′′ +
(

1 − α1

s
+ 1 − α2

s − 1

)
χ ′ + (α1 + α2 − 1)2 − α2

3

4s(s − 1)
χ = 0 .

(2.10)

If the independent variable t in the gDH system is defined by
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