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In this paper, a new lattice hydrodynamic model is proposed by taking delay feedback and flux change 
rate effect into account in a single lane. The linear stability condition of the new model is derived by 
control theory. By using the nonlinear analysis method, the mKDV equation near the critical point is 
deduced to describe the traffic congestion. Numerical simulations are carried out to demonstrate the 
advantage of the new model in suppressing traffic jam with the consideration of flux change rate effect 
in delay feedback model.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Due to the increasing of vehicles on the road, traffic congestion 
which causes a great number of social and economic problems, has 
aroused wide public concern. In order to deal with the increasing 
traffic problems, lots of models [1–31], such as lattice hydrody-
namic model [9–14], car-following model [15–19] and cellular au-
tomaton model [13–15], have been proposed by many experts to 
explain the essence of traffic flow.

The car-following model describes the relationship between ad-
jacent vehicles at a micro level. In 1961, Newell [15,16] put for-
ward a car following model with differential equation and depicted 
the optimal velocity (OV) function for the first time. Subsequently 
in 1965, a classic car-following model was proposed by Bando et 
al. [26], Zeng et al. [27] called optimal velocity model (OVM). Later, 
many researchers developed the model with the consideration of 
many factors. In recent years, the control theory has become more 
and more important in many fields. From the viewpoint of control 
method, Zhao et al. [28], Zhou et al. [29] represented coupled-map 
(CM) car-following model by taking effect of delayed-feedback con-
trol [30,31] between the adjacent automobiles into account.
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To explain the dynamical phase transitions, Nagatani [32] firstly 
introduced the lattice hydrodynamic model in single lane incorpo-
rating the advantages of macroscopic model [33] and car-following 
model. In last decades, the lattice hydrodynamic model has widely 
been used to analyze the traffic flow. In 2012, Peng [34] put for-
ward a new model considering driver’s memory model of traffic 
flow. Later, density difference effect (DDE) model was represented 
by Wang [35] with the consideration of density difference effect. 
Although, the application of control method is widespread in car-
following model, feedback signal was seldom considered in lattice 
hydrodynamic model. And most of lattice hydrodynamic models 
were adopted to describe the traffic flow by density wave. Until 
2015, Ge [36] began to take control theory into account in lat-
tice hydrodynamic model with the consideration of flux difference 
to suppress traffic congestion. Subsequently, a new feedback con-
trol signal called delayed-feedback control (DFC) was proposed by 
Redhu [37]. Recently, Zhu [38] carried out a new control signal 
called the variation rate of the optimal velocity in lattice hydrody-
namic model.

In the actual traffic, drivers adjust their driving behavior with 
the delay time. By observing the drivers’ actual traffic behavior, 
Herman [39] found that drivers will leave past time information 
during driving. From Herman’s research, we can easily get that de-
lay feedback is necessary in drivers’ behavior. But in reality, delay 
signal usually plays a negative feedback, such as emergency brake. 
To overcome the disadvantages, a new control signal we called 
flow change rate effect is taken into account in lattice hydrody-
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namic model. Based on delay feedback and flux change rate effect, 
a new lattice hydrodynamic model is proposed to investigate its 
influence on traffic jam.

The outline of the paper is listed as follows. In section 2, the 
basic lattice hydrodynamic model is derived, and we introduce the 
new control signal for lattice hydrodynamic model. In section 3, 
new control signals will be added into the basic lattice hydrody-
namic model and feedback control theory is used to analyze the 
stability conditions. In section 4, nonlinear analysis is introduced 
to describe the traffic congestion. In section 5, several numerical 
simulations are carried out to verify the theoretical result. Conclu-
sions are given in section 6.

2. Basic model

In 1998, Nagatani [32] incorporating the model proposed by 
Kerner [33] and the idea of microscopic optimal velocity model 
derived the equations, as follows:{

∂tρ + ∂x(ρv) = 0

∂t(ρv) = aρ0 V (ρ(x + δ)) − aρv,
(1)

where ρ0 and ρ represent average density and current density at 
time t respectively. δ means the average space headway which is 
the reciprocal of average density: ρ0 = 1/δ. x is the position of 
location lattice, so ρ(x + δ) is the current density on the position 
of x + δ. a represents the sensitivity coefficient of driver (a > 0). 
Nagatani [32] creatively put forward the dicretization method to 
transform the equation (1) as follows:{

∂tρ j + ρ0
(
ρ j v j − ρ j−1 v j−1

) = 0

∂t(ρ j v j) = aρ0 V (ρ j+1) − aρ j v j,
(2)

where j represents the jth lattice in one-dimensional lattice hy-
drodynamic traffic model. ρ j and v j are current density and av-
erage velocity on the position of jth lattice at time t respectively. 
Later, we make q = ρv called flux, and consider delay feedback 
and flux change rate control signal in equation (2).{

∂tρ j+1 + ρ0
(
q j+1 − q j

) = 0

∂t(q j) = aρ0 V (ρ j+1) − aq j + u j,
(3)

where control signal u j is listed as follows, and k is the weighting 
value, which represents delay feedback of drivers (0 < k < 1). λ is 
coefficient of flux change rate:

u j = k(q j+1(t) − q j+1(t − τ )) + λ∂tq j+1. (4)

Nagatani [25] also proposed the new optimal velocity function 
about lattice hydrodynamic model which is similar to microscopic 
model. It is taken as

V (ρ) = (vmax/2) [tanh (1/ρ − 1/ρc) + tanh (1/ρc)], (5)

where vmax represents the maximum velocity of vehicle on this 
road and ρc is safety density.

3. Control scheme

In this section, we investigate the influence of feedback con-
trol signal and consider on the traffic flow. Control theory will be 
applied to analyze the stability condition of the new lattice hydro-
dynamic model we proposed. We assume the desired density and 
flux in steady state:

[ρn (t) ,qn (t)]T = [ρ∗
n ,q∗

n]T , (6)

where q∗
n and ρ∗

n represent the theoretical state of flux and density. 
We apply stability criterion analysis the system considering small 
perturbation. The equation can be derived by the control method:⎧⎪⎨
⎪⎩

∂tδρ j+1 + ρ0
(
δq j+1 − δq j

) = 0

∂t(δq j) = aρ0�n+1δρ j+1 − aδq j(s)

+ k[δq j+1(t) − δq j+1(t − τ )] + λ∂tδq j+1,

(7)

where �n+1 = ∂V (ρn+1)
ρn+1

, δρ j = ρ j − ρ∗ , δq j = q j − q∗ .
Taking Laplace transformation on Eq. (3), we can easily get:⎧⎪⎨

⎪⎩
sP j+1 (s) − ρ j+1 (0) + ρ0[Q j+1 (s) − Q j (s)] = 0

sQ j(s) − q j(0) = aρ0[�n+1 P j+1(s) − Q j(s)]
+ kQ j+1(1 − e−sτ ) + λs[Q j+1 − q j+1(0)],

(8)

where L(ρ j+1) = P j+1(s), L(q j+1) = Q j+1(s), L(q j) = Q j(s). L(·)
indicates the Laplace transform function and s represents the 
transform function variable. Simplifying Eq. (8), we eliminates the 
variable P j+1(s) as follows:

(s2 + as − aρ2�n+1)Q j(s)

= [ks(1 − eτ s) + λs2 − aρ2�n+1]Q j+1(s). (9)

Then the transfer function G(s) can be written by control the-
ory:

G(s) = ks(1 − esτ ) + λs2 − aρ2
0�n+1

s2 + as − aρ2�n+1
, (10)

where the characteristic polynomial p (s) = s2 + as − aρ2
0�n+1.

By the Hurwitz stability criterion, we can easily draw a con-
clusion that when traffic flow is smooth, characteristic function 
p(s) is greater than 0. In order to make the system stable, it can 
be confirmed that p(s) is satisfied by Routh criterion. Inequalities 
a +λa > 0, −aρ2

0�n+1 > 0, and G(s) must be smaller than 1 for all 
ω2 to ensure stability of system by Hurwitz stability criterion. The 
follow derivation provides a effective measure to work out system 
stable condition:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖G (s)‖∞ = supω∈[0,∞) |G ( jω)| ≤ 1

|G ( jω)| = √
G( jw)G(− jw)

=
√√√√ 2k2ω2(1−cosωτ)+2(kλω3+aρ2

0 k�n+1ω)sinωτ+λ2ω4+a2ρ4�2
n+1+2aω2ρ2

0 �n+1

ω4+aω2(a+2ρ2
0 �n+1)+a2ρ4

0 �2
n+1

.

(11)

The sufficient condition can be derived as follows:

2k2ω[1 − cosωτ ] + 2(kλω2 + aρ2
0k�n+1)sinωτ + (λ2 − 1)ω3

− (1 + a2)ω ≤ 0 (12)

4. Nonlinear analysis

In this section, the reductive perturbation method is introduced 
to carry out the mKDV equations. In the unstable region, we as-
sume that the X and T are the slow variables, which can be 
defined by space variable j and time variable t ,

X = ε( j + bt), T = ε3t,ρ j = ρc + εR(X, T ), (13)

where b is a definite constant and ε is a small positive scaling pa-
rameter. Substituting Eqs. (13) into Eq. (3) and carrying the Taylor 
expansions to the fifth order the fifth order of ε, the equation we 
get:
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