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We show that the theoretical predictions on high energy behavior of the photoionization cross section of 
fullerenes depend crucially on the form of the function V (r) which approximates the fullerene field. The 
shape of the high energy cross section is obtained without solving the wave equation. The cross section 
energy dependence is determined by the analytical properties of the function V (r).

© 2017 Published by Elsevier B.V.

1. Introduction

In this paper we calculate the high energy nonrelativistic 
asymptotics for the photoionization cross section of the valence 
electrons of fullerenes CN . We consider the fullerenes which can 
be treated approximately as having the spherical shape. The pho-
ton carries the energy ω which is much larger than the ionization 
potential I . We find the leading term of the cross section expan-
sion in terms of 1/ω. We keep the photon energy to be much 
smaller than the electron rest energy mc2. Here we consider only 
the ionization of s states. We employ the relativistic system of 
units in which h̄ = 1; c = 1 and the squared electron charge 
e2 = α = 1/137.

The actual potential experienced by the fullerene valence elec-
trons is a multicentered screened Coulomb potential produced 
by the C+4 carbon ions of the fullerene. The ionized electron 
approaches one of these centers transferring large momentum. 
The asymptotics of the photoionization cross section σ(ω) in the 
screened Coulomb field is the same as in the unscreened one [1], 
i.e. σ ∼ ω−7/2. Thus we expect the observed asymptotic also to be 
σ ∼ ω−7/2.

However one usually uses a model central potential V (r) for 
description of the field created by the fullerene. For a model poten-

E-mail address: mikhailo@thd.pnpi.spb.ru (A.I. Mikhailov).

tial the asymptotics may be a different one. We consider spherical 
fullerene with the radius R and the width of the layer � � R . 
The general properties of the potential V (r) are well known—see, 
e.g. [2]. It is located mostly inside the fullerene layer R − �/2 ≤
r ≤ R + �/2 being negligibly small outside.

In the simplest (or even the oversimplified [3]) version it is just 
the well potential which is constant inside the layer and vanishes 
outside. Introducing R2,1 = R ± �/2 we can present the potential 
as

V (r) = −V 0θ(r − R1)
(

1 − θ(r − R2)
)
; V 0 > 0. (1)

Recall that θ(x) = 1 for x ≥ 0 while θ(x) = 0 for x < 0. One often 
uses the Dirac bubble potential

V (r) = −U0δ(r − R), (2)

in the fullerene studies [4]. Here, as well as in Eqs. (3) and (4)
U0 > 0 are the dimensionless constants.

The nowadays calculations are often based on the jellium 
model [5] (see, e.g. [6,7]). In this approach the charge of the posi-
tive core consisting of nuclei and the internal electrons is assumed 
to be distributed uniformly in the fullerene layer. The field of 
the positive core is V (r) = V 1(r) at 0 ≤ r < R1, V (r) = V 2(r) at 
R1 ≤ r ≤ R2, and V (r) = V 3(r) at r > R2 with

V 1(r) = const = −U0
3

2

R2
2 − R2

1

R3
2 − R3

1

;
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V 2(r) = − U0

2(R3
2 − R3

1)

(
3R2

2 − r2(1 + 2R3
1

r3
)
)
;

V 3(r) = − U0

r
. (3)

Sometimes model potentials are determined by analytical func-
tions of r with a sharp peak at r = R . The Lorentz bubble potential 
is

V (r) = − U0

π

a

(r − R)2 + a2
. (4)

It describes the Dirac bubble potential at a → 0. The Gaussian-type 
potential

V (r) = − V 0

π
exp

−(r − R)2

a2
, (5)

with a ≈ � � R was employed in [8].
Strictly speaking our analysis is true for the negative ion C−

N . 
However, since there are many valence electrons in the fullerene 
shell, we expect it to be true for photoionization of the neutral 
fullerene CN as well.

As it stands now, the asymptotics for the photoionization cross 
section is known only for the Dirac bubble potential [10]. Here 
we demonstrate that the energy behavior of the asymptotic cross 
section is strongly model dependent. It is determined by the an-
alytical properties of the potential V (r). In Sec. 2 we obtain the 
general equation for the asymptotics of the photoionization cross 
section. In Sec. 3 we calculate the asymptotics for the potentials 
mentioned in Introduction. We analyze the results in Sec. 4.

2. Asymptotics of the cross section

The photoionization cross section can be presented as (see 
Eq. (56.3) of [9] or Eq. (5.76) of [4])

dσ = ne
mp

(2π)2
|F |2d	. (6)

Here m is the electron mass, p = |p|, while p is the photoelectron 
momentum, 	 is the solid angle of the photoelectron, and ne is the 
number of electrons in the ionized state. The normalization factor 
of the photon wave function n(ω) = √

4π/
√

2ω is included in the 
photoionization amplitude F . Averaging over polarizations of the 
incoming photon is assumed to be carried out.

We consider the photon energy ω which is much larger than 
the ionization potential I , i.e. ω 	 I . Limiting ourselves by the con-
dition ω � m we can treat the photoelectron in nonrelativistic ap-
proximation. The kinetic energy of the photoelectron is ε = ω− I =
p2/2m. The electron momentum p is much larger than the char-
acteristic momentum μ = (2mI)1/2 of the bound state (p 	 μ). At 
ω 	 I the photoionization requires large momentum q = k − p to 
be transferred to the recoil fullerene. Here k is the photon mo-
mentum, and k = |k| = ω. One can see that k � p if I � ω � m
and thus we can put |q| = q = p.

If the electron–photon interaction is written in the velocity 
form, momentum q is transferred in the initial state in ioniza-
tion of s states [11,4]. Thus the photoelectron can be described 
by plane wave. Interaction of the photoelectron with the ionized 
fullerene provides the contributions of the relative order O (1/p)

to the amplitude. Hence they contribute to the cross section be-
yond the asymptotics. The photoionization amplitude can be writ-
ten as F = n(ω) 

∫
d3rψ∗

p (r)γψ(r) with ψp and ψ the wave func-
tions of the photoelectron and the bound electron correspondingly; 
γ = −i

√
αe · ∇/m is the operator of interaction between the pho-

ton and electron. In momentum space the amplitude takes the 
form

F = √
αn(ω)

∫
d3 f

(2π)3
ψp(f)

e · f

m
ψ(f − k).

Since the photoelectron is described by the plane wave, i.e. ψp(f) =
(2π)3δ(f − p), the amplitude of photoionization can be written 
as [11]

F = N(ω)
e · p

m
ψ(p); N(ω) =

(4πα

2ω

)1/2
. (7)

We replaced q by p in the argument of the Fourier transform of 
the wave function of the fullerene electron. The latter is ψ(p) =∫

d3rψ(r)e−ip·r .
Now we present the wave function ψ(p) in terms of the Fourier 

transform of the potential

V (p) =
∫

d3rV (r)e−ip·r = 4π

p

∞∫

0

drrV (r) sin pr. (8)

The function ψ(p) can be expressed by the Lippmann–Schwin-
ger equation [4]

ψ = ψ0 + G(εB)V ψ, (9)

with G the electron propagator of free motion, εB = −I is the en-
ergy of the bound state. The matrix element of the propagator is

〈f1|G(εB)|f2〉 = g(εB , f1)δ(f1 − f2); g(εB , f1) = 1

εB − f 2
1 /2m

.

For a bound state ψ0 = 0, and thus Eq. (9) can be evaluated as 
ψ(p) = 〈p|G V |ψ〉 = g(εB , p) J (p) with

J (p) =
∫

d3 f

(2π)3
〈p|V |f〉〈f|ψ〉 =

∫
d3 f

(2π)3
V (p − f)ψ(f). (10)

Putting also g(εB , p) = −2m/p2 we obtain

ψ(p) = −2m

p2
J (p) = − J (p)

ω
. (11)

The integral J (p) is saturated at f ∼ μ � p. Thus its dependence 
on p is determined by that of V (p). Another presentation

J (p) =
∫

d3rψ(r)V (r)e−ip·r = 4π

p

∞∫

0

drχ(r)V (r) sin (pr);

χ(r) = rψ(r), (12)

which can be obtained by the Fourier transformation of the inte-
grand on the right-hand side of Eq. (10).

We shall demonstrate that for the potential can take the form 
V (p) = V 1(p) + V 2(p) with the two terms corresponding to two 
fullerene characteristics R1 and R2. In this case J (p) can be pre-
sented as

J (p) = V 1(p)κ1 + V 2(p)κ2, (13)

where the factors κ1,2 do not depend on p, being determined by 
the characteristics of the bound state. Thus Eq. (11) can be written 
as

ψ(p) = − 1

ω

(
V 1(p)κ1 + V 2(p)κ2

)
, (14)

and Eq. (7) can be presented as

F = − N(ω)

ω

e · p

m

∑
i=1,2

V i(p)κi . (15)
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