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We theoretically investigate the electronic transport through a parallel-coupled multi-quantum-dot 
system, in which the terminal dots of a one-dimensional quantum-dot chain are embodied in the two 
arms of an Aharonov–Bohm interferometer. It is found that in the structures of odd(even) dots, all 
their even(odd) molecular states have opportunities to decouple from the leads, and in this process 
antiresonance occurs which are accordant with the odd(even)-numbered eigenenergies of the sub-
molecule without terminal dots. Next when Majorana zero modes are introduced to couple laterally to 
the terminal dots, the antiresonance and decoupling phenomena still co-exist in the quantum transport 
process. Such a result can be helpful in understanding the special influence of Majorana zero mode on 
the electronic transport through quantum-dot systems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Majorana modes in solid states have attracted a great deal of attention due to their fundamental interest and potential application for 
the fault-tolerant quantum computation. During the past years, different groups have proposed various ways to realize unpaired Majorana 
bound state (MBS), such as in a vortex core in a p-wave superconductor [1–6] or superfluid [7,8]. Recently, it has been reported that MBSs 
can be realized at the ends of a one-dimensional p-wave superconductor for which the proposed system is a semiconductor nanowire 
with Rashba spin-orbit interaction to which both a magnetic field and proximity-induced s-wave pairing are added [9–12]. More recently, 
experiments have been continuously improved for searching the MBSs, and the signs of MBS have also become clear [13–15]. This exactly 
means that MBSs can be constructed in solid states, and that its application becomes more feasible.

Transport property is an important aspect for describing the application probability of one quasiparticle. And then, researchers designed 
various circuits to investigate the transport properties of MBS. Moreover, it is considered to couple laterally to the QD systems to observe 
the quantifiable influence of the MBS on the electron transport process. As a consequence, some interesting results have been reported. 
For example, when the QD system is noninteracting and in the resonant-tunneling regime, the MBS modifies the conductance through the 
QD by inducing the sharp decrease of the conductance by a factor of 1

2 [16,17]. For the QD in the Kondo regime, the QD-MBS coupling 
induces the new Kondo physics and reduces the conductance plateau by exactly a factor 3

4 [18]. Besides in the double-QD structures, the 
crossed Andreev reflection [19] and nonlocal entanglement [20] induced by the MBSs are show interesting behaviors.

QDs are well-known for the characteristics that they can couple to form the QD-molecule systems. In comparison with the single-QD 
systems, QD molecules present more intricate quantum transport behaviors, because of the tunable structure parameters and abun-
dant quantum interference mechanisms. For instance, in the T-shaped QD-molecule structures, the antiresonance points in transmission 
spectrum are related to the molecular states of the laterally-coupled sub-molecule [21–23]. In QD-ring structures, abundant decoupling 
phenomenon will come into being, which is significant for the electron manipulation. The influence of MBS on the resonant tunneling and 
Kondo physics motivates us to think about its role in modulating other transport results, such as the antiresonance and decoupling mecha-
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Fig. 1. Schematic diagram of one parallel-coupled multi-QD setup with laterally-coupled Majorana zero modes, where the terminal QDs couple to two leads. The terminal 
QDs are also connected with Majorana zero modes. The couplings between the terminal QDs and the leads are defined by Vα j (α ∈ L, R and j = 1, N). In addition, local 
magnetic flux is supposed to thread such a quantum ring.

nisms. Therefore, in the present work we consider one parallel-coupled QD structure, in which the terminal QDs of a one-dimensional QD 
chain are embodied in the two arms of an Aharonov–Bohm interferometer. In such a system, all the even(odd) molecular states can de-
couple from the leads for odd(even)-QD structures, accompanied by occurrence of antiresonance which are related to the eigenenergies of 
the sub-molecule without terminal QDs. Our purpose is to investigate the influence of the QD-MBS coupling on this phenomenon. What’s 
interesting is that when Majorana zero modes are introduced to couple laterally to the terminal QDs, the antiresonance and decoupling 
phenomena survive, moreover, they are independent of the increase of the QD-MBS coupling.

2. Theoretical model

The electronic transport structure is illustrated in Fig. 1. In such a structure, each terminal QD of one QD chain is coupled to one MBS, 
respectively. The Hamiltonian of this system can be written as H = H0 + H D + H M + H M D + HT . The first term is the Hamiltonian for the 
two normal metallic leads, which takes the form as

H0 =
∑
αk

εαkc†
αkcαk. (1)

c†
αk (cαk) is an operator to create (annihilate) an electron of the continuous state |k〉 in the lead-α (α ∈ L, R). εαk is the corresponding 

single-particle energy. The second term is the Hamiltonian for the QD molecule. It is described as

H D =
N∑

j=1

ε jd
†
jd j +

N−1∑
j=1

t jd
†
jd j+1 + H.c. (2)

d†
j (d j) is the creation (annihilation) operator of electron in QD- j. ε j denotes the electron level in the corresponding QD, and t j denotes 

the tunneling between the two neighboring QDs. Note that since the QD structure is noninteracting, we in this paper neglect the spin 
index. Next, H M is the Hamiltonian of the Majorana bound states. In this work, we would like to adopt its low-energy effective form, for 
clarifying its-induced leading physics. And then, H M reads [24]

H M = iεU ηU 1ηU 2 + iεDηD1ηD2. (3)

Each term describes the paired MBSs generated at the ends of the nanowire and coupled to each other by an energy εU (D) ∼ e−lU (D)/ξ , 
with lU (D) the wire length and ξ the superconducting coherence length. The following term describes the tunnel coupling between QD-1
(and QD-N) and the nearby MBS, which is given by

H M D = (λU d1 − λ∗
U d†

1)ηU 1 + (λDdN − λ∗
Dd†

N)ηD1. (4)

λU (D) is the coupling coefficient between QD-1 (QD-N) and the MBS. Finally, H T represents the coupling between the QD molecule and 
the metallic leads

HT =
∑
αk

Vα1d†
1cαk +

∑
αk

VαNd†
N cαk + H.c. (5)

Vα j is the tunneling element between QD- j and lead-α. Due to the existence of one quantum ring, local magnetic flux can be introduced 
through the ring to adjust the quantum interference that governs the electronic transport, due to its-induced Aharonov–Bohm effect. 
Under the symmetric gauge, the QD-lead coupling coefficients can be taken to be VL1 = V∗

RN = V0eiφ/4 and V∗
LN = VR1 = V0eiφ/4 [25]. 

Here φ is the magnetic-flux phase factor, which obeys the relationship of φ = 2π 

φ0

with 
 being the magnetic flux and φ0 = h/e the 
magnetic flux quantum.

In Fig. 1, we consider that μL = εF + eV
2 and μR = εF − eV

2 (μα is the chemical potential of lead-α, and εF is the Fermi level in the 
case of V = 0 which can be assumed to be zero), and their difference will drive the electron transport. Note that in the presence of MBSs, 
this structure is actually a three-terminal system. Thus, the current of lead-L and lead-R should be calculated, respectively, for completely 
clarifying the transport properties. The current in lead-α can be evaluated by various methods, such as the scattering matrix method and 
the nonequilibrium Green function technique [26]. We here employ the latter to discuss the transport behaviors. Via a straightforward 
derivation, we obtain the expression of the current in one lead:
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