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There are two valleys in the band structure of graphene zigzag ribbons, which can be used to construct 
valleytronic devices. We studied the use of a T junction formed by an armchair ribbon and a zigzag 
ribbon to detect the valley-dependent currents in a zigzag graphene ribbon. A current flowing in a zigzag 
ribbon is divided by the T junction into the zigzag and armchair leads and this separation process is 
valley dependent. By measuring the currents in the two outgoing leads, the valley-dependent currents 
in the incoming lead can be determined. The method does not require superconducting or magnetic 
elements as in other approaches and thus will be useful in the development of valleytronic devices.

© 2017 Published by Elsevier B.V.

1. Introduction

The recent high level of interest in two dimensional materials 
[1,2] is not only due to their special electronic [3,4] and spintronic 
properties [5–8], but also due to the potential applications in val-
leytronics [9–11]. In the Brillouin zones of these materials, there 
are two inequivalent valleys which are related by time-reversal 
symmetry. Electrons can be in either one of the two valleys and 
the valley index is an additional degree of freedom which can be 
used to carry information. The exploitation of the valley degree of 
freedom instead of the electrical charge in valleytronic devices re-
quires the following functions: generation, control and detection of 
valley polarized current [12–18]. Various methods have been stud-
ied for the generation of valley polarized current, such as quantum 
pumping and optical excitation. The manipulation of the valley de-
gree of freedom has been studied by Lee et al. [19] and the valley 
selection rule in a Y shaped graphene zigzag ribbon structure has 
been investigated by Zhang and Wang [20]. Methods of detection 
for valley polarization have also been studied, which requires ei-
ther superconductors or magnetic elements [21–23]. Akmerov and 
Beenakker [23] studied the Andreev reflection in a bulk graphene-
superconductor junction and proposed using the junction conduc-
tance to detect the valley polarization of quantum Hall edge states. 
Wu et al. [22] studied the valley-dependent Goos Haanchan effect 
in a strained graphene waveguide and proposed the use of a val-
ley filter constructed with strained graphene and a ferromagnetic 
strip as a detector of the valley polarization. In graphene zigzag 
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nanoribbons [24], there are two valleys, K and K ′ , in the band 
structure, which resembles the bulk band structure. The current in 
a zigzag ribbon can thus be valley polarized to carry information. 
Recently, in an experimental study of graphene electron waveg-
uides [25], where electrons are confined by metal gates, it is found 
that the electron conduction quantizes in steps of 4e2/h, which 
is a characteristic of zigzag ribbons, although the orientations of 
these waveguides can be different from the zigzag direction. This 
indicates the valley characteristics of zigzag ribbons are preserved 
in metal-gate waveguides along other directions. This study con-
firms the important role of zigzag ribbons in the development of 
valleytronic devices and it is therefore important to know how one 
can detect and measure valley polarization in zigzag ribbons. Nev-
ertheless, this important issue has not been addressed with due 
attention. We therefore describe in this paper how a T junction, 
which is formed by joining an armchair ribbon to a zigzag rib-
bon as shown in Fig. 1, is used to measure the current valley 
polarization in a zigzag ribbon. Since no superconducting, strain 
or magnetic elements are used, the method can lead to simpler 
fabrication procedures and device designs for valleytronic devices 
and will play an important role in their development.

2. Model

We consider in this study T junctions constructed from an arm-
chair ribbon and a zigzag ribbon as shown schematically in Fig. 1
with the armchair ribbon lying along the x-direction and being 
perpendicular to the zigzag ribbon, which lies along the y direc-
tion. Since the symmetries of the two ribbons are different from 
the bulk symmetry, the ribbon unit cells should be different from 
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Fig. 1. (Color online.) The schematic diagram of the T junction considered. The ar-
rows show the current flow in the junction when it is used to detect the valley 
dependent currents I K and I K ′ . I A and I Z denote the outgoing currents in the arm-
chair and zigzag ribbons respectively. The inset shows the 4 atoms in the unit cell 
structure used to build the junction. N y is the number of unit cells along the trans-
verse direction of the armchair ribbon and Nx is the number of unit cells along the 
transverse direction of the zigzag ribbon.

the bulk one. The structures of the two ribbons can be described 
using a unit cell defined by two vectors, (3a, 0) and (0, 

√
3a), 

where a is the carbon–carbon bond length. In each unit cell 
there are four atoms at the positions (0, 

√
3a/2), (a/2, 0), (3a/2, 0), 

(2a, a/2). The arrangement of these atomic sites are shown in 
the inset of Fig. 1. The translation vector for the zigzag ribbon is 
(0, 

√
3a), which is along the y direction. As a result, the ribbon 

lies along the y direction. For the armchair ribbon, the transla-
tion vector is (3a, 0), which is along the x-direction. The width of 
the zigzag ribbon is denoted by Nx , the number of unit cells along 
the x-direction in the zigzag ribbon. For the armchair ribbon, the 
width is denoted by the number of unit cells along the y-direction, 
N y . The armchair ribbon constructed with this unit cell does not 
possess reflection symmetry. To construct an armchair ribbon with 
mirror symmetry along the longitudinal direction, we need to re-
move the two atoms at positions (a/2, 0), (3a/2, 0) in the last row 
unit cell. For example, in Fig. 1, the armchair ribbon is constructed 
with 8 unit cells along the y direction. Two atoms in the N y = 8
unit cell are removed so that the ribbon and the T junction can 
both have mirror symmetry. For identical Nx and N y , the width of 
the zigzag ribbon is 

√
3 times of the width of the armchair ribbon 

as the x dimension of the unit cell is 
√

3 times of the y dimension.
We use the tight-binding Hamiltonian H = ∑

i eb+
i bi +∑

<i j> t(b+
i b j + b+

j bi) to describe electron motion in the junction, 
where b+

i (bi) denotes the creation (annihilation) operator of site i. 
The first summation in the Hamiltonian is over all the atomic sites 
i of the structure considered and the second summation is over 
neighboring sites with indices i and j. e is the orbital energy of 
the identical atomic sites and t = 2.8 eV is the hopping energy be-
tween two sites. In this study, the energy is expressed in unit of t
for convenience.

The transmission properties of the junction can be found from 
the wave functions of the structure, which consist of the incident 
and the reflected waves, in the incoming lead. In the outgoing 
leads, the wavefunction depends on the scattering matrix s̃ as in ∑

m sp
mnψ

p
m(i) +∑

r se
rnψ

e
r (i), where p (e) superscript represents the 

propagation (evanescent) modes. n represents the incident modes 
and m represents the outgoing modes. The total conductance at 
Fermi energy E F is G = (e2/h) 

∑
mn |smn(E F )|2, where the summa-

tion is over all the outgoing and the incident propagation modes. 
The valley dependent conductances are obtained by summing only 
the modes in the corresponding valleys. To find the scattering wave 
functions and the transmissions, we use the Kwant python pack-
age for quantum transport calculation [26]. According to Ref. [26]

Fig. 2. (Color online.) The subbands of the armchair and zigzag ribbons. d denotes 
the length of the translational vector of the ribbon. d = √3a for zigzag ribbon. d =
3a for armchair ribbon. Energy is in unit of t , the hopping energy. The numbers of 
unit cells in the transverse direction are 50.

the wave function in the scattering region and the wave functions 
in the leads are inserted in the Hamiltonian, which is equivalent 
to matching the wave functions of the scattering region and the 
leads. The Hamiltonian equation is then converted into a system 
of linear equations which also includes the effect of the outgoing 
and evanescent modes in the leads. The system of linear equa-
tions obtained is sparse, which can be solved efficiently by some 
sparse matrix libraries to find the wave function and the scatter-
ing matrix. The use of sparse matrices is the reason why the Kwant 
package can be faster than the recursive Green’s function approach 
in medium and large systems. The details of the algorithm will be 
described in details in a forthcoming publication by the Kwant de-
velopers.

3. Results

In Fig. 2, the subband structures of an armchair and a zigzag 
ribbon are shown where two valleys can be identified in a zigzag 
ribbon and one valley is identified in an armchair ribbon. Similar 
band structures are obtained by Brey and Fertig [27] using a k.p 
approach. The numbers of unit cells in the transverse dimension in 
both ribbons are 50. The two valleys in a zigzag ribbon can have 
different populations of electrons and carry different currents. The 
valley polarization of the current in the zigzag ribbon is defined 
as P v = (I K − I K ′ )/(I K + I K ′ ), where I K (K ′) is the current in the K
(K ′) valley in the incident zigzag ribbon (shown schematically in 
Fig. 1). Here, the K valley in the zigzag ribbon consists of subbands 
with wave vector > 0 and the K ′ valley consists of subbands with 
wave vector < 0. The valley polarization is a way of represent-
ing information and therefore it is necessary to have a method to 
detect the valley polarization in a graphene nanoribbon. Consider 
a zigzag graphene nanoribbon with different current flows in the 
two valleys. If the zigzag ribbon is joined with an armchair ribbon 
to form a T junction as shown in Fig. 1, the valley-dependent cur-
rents in the zigzag ribbon is divided into the two outgoing arms 
of the junction. By measuring the currents in the outgoing leads, 
which are denoted by I A and I Z , we can deduce the valley po-
larization of the current in the incoming lead with an approach 
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