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For any quantity of interest in a system governed by ordinary differential equations, it is natural to 
seek the largest (or smallest) long-time average among solution trajectories, as well as the extremal 
trajectories themselves. Upper bounds on time averages can be proved a priori using auxiliary functions, 
the optimal choice of which is a convex optimization problem. We prove that the problems of finding 
maximal trajectories and minimal auxiliary functions are strongly dual. Thus, auxiliary functions provide 
arbitrarily sharp upper bounds on time averages. Moreover, any nearly minimal auxiliary function 
provides phase space volumes in which all nearly maximal trajectories are guaranteed to lie. For 
polynomial equations, auxiliary functions can be constructed by semidefinite programming, which we 
illustrate using the Lorenz system.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For dynamical systems governed by ordinary differential equa-
tions (ODEs) whose solutions are complicated and perhaps chaotic, 
the primary interest is often in long-time averages of key quanti-
ties. Time averages can depend on initial conditions, so it is natural 
to seek the largest or smallest averages among all trajectories, as 
well as the extremal trajectories that realize them. For various pur-
poses including the control of chaos [1], it is valuable to know 
extremal trajectories regardless of their stability. In other situa-
tions one is interested only in stable trajectories, but determining 
extrema only among these can be prohibitively difficult. The next 
best option is to determine extrema among all trajectories.

One common way to seek extremal time averages is to con-
struct a large number of candidate trajectories. However, for many 
nonlinear systems it is challenging both to compute trajectories 
and to determine that the extremal ones have not been overlooked. 
In this Letter we study an alternative approach that is broadly 
applicable and often more tractable: constructing sharp a priori
bounds on long-time averages. We focus on upper bounds; lower 
bounds are analogous.
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The search for an upper bound on a long-time average can 
be posed as a convex optimization problem [2], as described in 
the next section. Its solution requires no knowledge of trajectories. 
What is optimized is an auxiliary function defined on phase space, 
similar to but distinct from Lyapunov functions in stability the-
ory. We prove here that the best bound produced by solving this 
convex optimization problem coincides exactly with the extremal 
long-time average. That is, arbitrarily sharp bounds on time av-
erages can be produced using increasingly optimal auxiliary func-
tions. Moreover, nearly optimal auxiliary functions yield volumes 
in phase space where maximal and nearly maximal trajectories 
must reside. Whether such auxiliary functions can be computed 
in practice depends on the system being studied, but when the 
ODE and quantity of interest are polynomial, auxiliary functions 
can be constructed by solving semidefinite programs (SDPs) [2–4]. 
The resulting bounds can be arbitrarily sharp. We illustrate these 
methods using the Lorenz system [5].

Consider a well-posed autonomous ODE on Rd ,

d
dt x = f(x), (1)

whose solutions are continuously differentiable in their initial con-
ditions. To guarantee this, we assume that f(x) is continuously 
differentiable. Given a continuous quantity of interest �(x), we 
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define its long-time average along a trajectory x(t) with initial con-
dition x(0) = x0 by

�(x0) = lim sup
T →∞

1

T

T∫
0

�(x(t))dt. (2)

Time averages could be defined using lim inf instead; our results 
hold mutatis mutandis.1

Let B ⊂ R
d be a closed bounded region such that trajectories 

beginning in B remain there. In a dissipative system B could be an 
absorbing set; in a conservative system B could be defined by con-
straints on invariants. We are interested in the maximal long-time 
average among all trajectories eventually remaining in B:

�
∗ = max

x0∈B
�(x0). (3)

As shown below, there exist x0 attaining the maximum. The fun-
damental questions addressed here are: what is the value of � ∗

, 
and which trajectories attain it?

2. Bounds by convex optimization

Upper bounds on long-time averages can be deduced using the 
fact that time derivatives of bounded functions average to zero. 
Given any initial condition x0 in B and any V (x) in the class C1(B)

of continuously differentiable functions on B ,2

d
dt V = f · ∇V = 0. (4)

This generates an infinite family of functions with the same time 
average as � since for all such V

� = � + f · ∇V . (5)

Bounding the righthand side pointwise gives

�(x0) ≤ max
x∈B

{� + f · ∇V } (6)

for all initial conditions x0 ∈ B and auxiliary functions V ∈ C1(B). 
Expression (6) is useful since no knowledge of trajectories is 
needed to evaluate the righthand side.

To obtain the optimal bound implied by (6), we minimize the 
righthand side over V and maximize the lefthand side over x0:

max
x0∈B

� ≤ inf
V ∈C1(B)

max
x∈B

{� + f · ∇V } . (7)

The minimization over auxiliary functions V in (7) is convex, al-
though minimizers need not exist. The main mathematical result 
of this Letter is that the lefthand and righthand optimizations are 
dual variational problems, and moreover that strong duality holds, 
meaning that (7) can be improved to an equality:

max
x0∈B

� = inf
V ∈C1(B)

max
x∈B

{� + f · ∇V } . (8)

Thus, arbitrarily sharp bounds on the maximal time average � ∗

can be obtained using increasingly optimal V . The result (8) can 
be considered part of the field of ergodic optimization [6,7], where 
an analogue for discrete dynamics has been proved.

The auxiliary function method is not the same as the various 
Lyapunov-type methods used to show stability or boundedness in 

1 The lim sup and lim inf averages need not coincide on every trajectory, but their 
maxima over trajectories do.

2 Here C1(B) denotes functions on B admitting a continuously differentiable ex-
tension to a neighborhood of B .

ODE systems. However, in instances where �(x) approaches infin-
ity as |x| → ∞, auxiliary functions that are bounded below and 
imply finite upper bounds � ≤ U also imply the existence of trap-
ping sets by the following argument. Suppose V ∈ C1(Rd) is an 
auxiliary function for which the maximum of � + f · ∇V over Rd

is no larger than U . Then,

d
dt V = f · ∇V ≤ U − � → −∞ (9)

as |x| → ∞. Expression (9) is a typical Lyapunov-type condition 
implying that all sufficiently large sublevel sets of � must be trap-
ping sets.

The remainder of this Letter is organized as follows. The next 
section describes how nearly optimal V can also be used to locate 
maximal and nearly maximal trajectories in phase space. The sec-
tion after illustrates these ideas using the Lorenz system, for which 
we have constructed nearly optimal V by solving SDPs. The final 
section proves the strong duality (8) and establishes the existence 
of maximal trajectories.

3. Near optimizers

In light of the duality (8), an initial condition x∗
0 and auxiliary 

function V ∗ are optimal if and only if they satisfy

�(x∗
0) = max

x∈B

{
� + f · ∇V ∗} . (10)

Even if the infimum over V in (8) is not attained, there exist nearly 
optimal pairs. That is, for all ε > 0 there exist (x0, V ) for which (6)
is within ε of an equality:

0 ≤ max
x∈B

{� + f · ∇V } − �(x0) ≤ ε. (11)

In such cases, maxx∈B {� + f · ∇V } is within ε of being a sharp 
upper bound on � ∗

, while the trajectory starting at x0 achieves a 
time average � within ε of � ∗

.
Nearly optimal V can be used to locate all trajectories consis-

tent with (11). Moving the constant term inside the time average 
and subtracting the identity (4) gives

0 ≤ max
x∈B

{� + f · ∇V } − (� + f · ∇V ) ≤ ε (12)

for such trajectories. The integrand in (12) is nonnegative, and the 
fraction of time it exceeds ε can be estimated. Consider the set 
where the integrand is no larger than M > ε ,

SM =
{

x ∈ B : max
x∈B

{� + f · ∇V } − (� + f · ∇V )(x) ≤ M
}
. (13)

Let FM(T ) denote the fraction of time t ∈ [0, T ] during which 
x(t) ∈ SM . For any trajectory obeying (12), this time fraction is 
bounded below as

lim inf
T →∞ FM(T ) ≥ 1 − ε/M. (14)

This follows from an application of Markov’s inequality: as the in-
tegrand in (12) is nonnegative,

ε ≥ M1x/∈SM = M

(
1 − lim inf

T →∞ FM(T )

)
. (15)

In practice, it may not be known if there exist trajectories satis-
fying (11) for a given V and ε . Still, the estimate (14) says that any 
such trajectories would lie in SM for a fraction of time no smaller 
than 1 −ε/M . The conclusion is strongest when ε 
 M , but if M is 
too large the volume SM is large and featureless, failing to distin-
guish nearly maximal trajectories. The result is most informative 
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