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In this paper ultimate dynamics of the five-dimensional cancer tumor growth model at the angiogenesis 
phase is studied. This model elaborated by Pinho et al. in 2014 describes interactions between 
normal/cancer/endothelial cells under chemotherapy/anti-angiogenic agents in tumor growth process. 
The author derives ultimate upper bounds for normal/tumor/endothelial cells concentrations and ultimate 
upper and lower bounds for chemical/anti-angiogenic concentrations. Global asymptotic tumor clearance 
conditions are obtained for two versions: the use of only chemotherapy and the combined application of 
chemotherapy and anti-angiogenic therapy. These conditions are established as the attraction conditions 
to the maximum invariant set in the tumor free plane, and furthermore, the case is examined when this 
set consists only of tumor free equilibrium points.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In recent fifteen years, a great effort has been made in the 
elaboration of mathematical non-spatial models for cancer tumor 
growth at the angiogenic stage in cases of no treatment and with 
treatment. It is well-known that tumor growth at the advanced 
stage, so called vascular stage, can be reasonably described by a 
system of ordinary differential equations, see e.g. [1,3,6,11,12,14,
15,17,20,27]. Therefore this kind of models can be efficiently in-
vestigated by powerful methods of qualitative theory of ordinary 
differential equations and dynamical systems theory. Besides, it is 
worth to mention that issues of global dynamics of tumor growth 
have been explored in many articles including e.g. [7,16,18,19].

Angiogenesis is a transition process from avascular to vascular 
tumor. In this mechanism cancer cells induce substances that lead 
to an increase in the population of additional endothelial cells. This 
causes the proliferation of blood cells, i.e. neoformation of capillary 
blood vessels, which leads to additional oxygen and nutrients sup-
plies for the tumor, [2].

In 2013 Pinho et al. have described the five-dimensional can-
cer tumor growth model at the angiogenesis phase for which 
chemotherapy and anti-angiogenic treatments are applied, [14]. 
This model has a noticeable impact on studies of dynamics of this 
phenomenon and can be written in the form:

ẋ1 = a1x1(1 − x1) − q1x1x2 − p1(x3, w)
x1 y

A1 + x1
, (1)
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ẋ2 = a2x2(1 − x2

1 + γ x3
) − q2x1x2 − p2(x3, w)

x2 y

A2 + x2
,

ẋ3 = βx2 + a3x3(1 − x3) − p3x3 w

A3 + x3
,

ẏ = δ − [ξ + d1x1

A1 + x1
+ d2x2

A2 + x2
]y

ẇ = φ − [η + d3x3

A3 + x3
]w,

with pi(x3, w) = pi0 + pi1x3 + pi2 w, i = 1, 2. Below it is used 
the notation for the nonnegative orthant R5+,0 := {x1 ≥ 0; x2 ≥ 0;
x3 ≥ 0; y ≥ 0; w ≥ 0} where equations (1) has a biological mean-
ing.

In these equations the following notations are exploited: 
x1(t)/x2(t)/x3(t) are normalized concentrations of normal/can-
cer/endothelial cells populations correspondingly; y(t) is a con-
centration of the chemotherapy agent; w(t) is a concentration of 
the anti-angiogenic agent for t ≥ 0. The model parameters in the 
normalized form can be described as follows: ai , i = 1, 2, 3, are the 
proliferation rates of xi ; qi, i = 1, 2, are two competition coeffi-
cients; pi0, i = 1, 2, is the killing rate of chemotherapy on xi in the 
absence of x3 and w respectively; pij, i, j = 1, 2, is the rate of in-
creased killing on xi by cancer cells per concentration of x3 ( j = 1) 
and w ( j = 2); p3 is the killing rate of anti-angiogenic therapy on 
x3; Ai, i = 1, 2, 3, is the Holling type 2 constant for xi, A3 > 1; β
is the rate of creation cancer cells due to endothelial cells; γ is 
the proportion of endothelial cells responsible for the tumor an-
giogenesis; di, i = 1, 2, 3, is the rate at which an anti-angiogenic 
agent and cancer cells combine with xi ; δ and φ are the respective 
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infusion rates of the chemotherapy agent and the anti-angiogenic 
agent; ξ and η are, respectively, the washout rates from the system 
of the chemotherapy agent and the anti-angiogenic agent.

In [14] various results on the system (1) dynamics have been 
obtained. Firstly, the property of dissipativity in the sense of Levin-
son has been described via the existence proof of an attracting 
polytope. Upper bounds for this polytope were presented, although 
the details of the derivation of the bound for x3-population were 
not presented. Further, in case of no chemotherapy (y ≡ 0; δ = 0) 
the persistence of the cancer cells population was established. Be-
sides, in case of no anti-angiogenic therapy (w ≡ 0; φ = 0) suf-
ficient conditions of the cancer cells population persistence was 
shown. In addition, a local stability analysis of the tumor free-
endothelial free equilibrium point (x2 = x3 = 0) has been provided.

The purpose of this work is to explore ultimate dynamics of 
the model (1) at large. The approach of this paper is based on: the 
localization method of compact invariant sets (LMCIS), [8,9]; one 
result for competitive systems, see e.g. in [4]; and the Dulac cri-
terion for a two-dimensional asymptotically autonomous system, 
[26]. It is worth to recall that papers [10,21–25] are devoted to the 
global dynamic analysis of interactions between the tumor and the 
immune system, as well as finding the tumor eradication condi-
tions; these works are based on the LMCIS.

The author’s principal results and their novelty concern the 
derivation of a number of conditions under which all trajectories of 
(1) are attracted to the tumor-free plane. This property has the bio-
logical meaning of global asymptotic tumor clearance. In addition, 
it is noted that global asymptotic tumor clearance conditions for 
the model reveal that dynamic tumor growth can be controlled af-
ter some observational period. These conditions are stated in terms 
of inequalities imposed on the treatment parameters δ; ξ ; η and φ. 
It is pointed out that in case when only chemotherapy treatment 
is applied in the model (1) the tumor eradication conditions (The-
orem 1) can describe a positive scenario for the patient’s health 
unlike the tumor persistence conditions found in [14]. Moreover, 
the combined application of chemotherapy and anti-angiogenic 
therapy is considered in Theorem 2 and global asymptotic tumor 
clearance conditions are obtained.

In order to deduce these conditions the derivation of ultimate 
densities for all variables involved in the model (1) is reviewed. 
In particular, the conservative bounds for concentrations of the 
chemotherapy agent and the anti-angiogenic agent are obtained.

This paper is organized as follows. Section 2 contains one basic 
assertion respecting the LMCIS. In Section 3, upper bounds were 
obtained for all concentrations of cell populations and both types 
of concentration of therapy using LMCIS. Further, positive lower 
bounds for ultimate concentration of both types of treatments are 
computed. The positivity of these lower bounds is essential in the 
proofs of main results (Theorems 1 and 2). Sections 4 and 5 con-
tain preliminary remarks respecting dynamics on the tumor-free 
plane x2 = 0/formulas for equilibrium points correspondingly. In 
Section 6 limit properties of trajectories are studied. Here in Propo-
sition 2 the author provides conditions under which the ω-limit 
set of each trajectory is attracted to the set x1x2 = 0 for the case 
when only chemotherapy is applied. In the case of chemotherapy 
alone, the conditions of attraction for each trajectory to the plane 
x2 = 0 are established in Theorem 1. Theorem 2 gives conditions 
that guarantee the global asymptotic stability of the tumor-free 
equilibrium point for the case of using both types of therapy. It 
is worth to notice that the condition of Theorem 2 is fulfilled for 
parameters of Table 2, [14]. The latter theorem confirms results of 
numerical simulation presented in [14]. In Section 7 tumor eradi-
cation bounds are compared and discussed. In Section 8 conditions 
under which each trajectory in the tumor-free plane tends to one 
of the equilibrium points are presented. Concluding remarks are 
given in Section 9.

2. Some preliminaries and notations

For the reader’s convenience the author reminds one helpful 
assertion. It is considered a nonlinear system

ẋ = F (x), (2)

where x ∈ Rn , F (x) = (F1(x), . . . , Fn(x))T is a differentiable vector 
field. Let h(x) ∈ C∞(Rn) be a function such that h is not the first 
integral of the system (2). The function h is used in the solution of 
the localization problem of compact invariant sets and is called a 
localizing function. Below h|U denotes the restriction of h on a set 
U ⊂ Rn;

S(h) = {x ∈ Rn | L F h(x) = 0},
where L F h(x) is a Lie derivative with respect to F . It is proposed 
to get the localization of all compact invariant sets located in the 
set U . Further, it is used the following notation:

hinf(U ) := inf{h(x) | x ∈ U ∩ S(h)};
hsup(U ) := sup{h(x) | x ∈ U ∩ S(h)}.

Assertion. [8,9]. For any h(x) ∈ C∞(Rn) all compact invariant sets of 
the system (2) located in U are contained in the set K (U ; h) defined by 
the formula

{x ∈ U | hinf(U ) ≤ h(x) ≤ hsup(U )}
as well.

3. Ultimate upper and lower bounds

In this section upper and lower bounds for the localization 
polytope containing all compact invariant sets are derived. Upper 
bounds give ultimate maximal values for all cells populations in-
volved in the model. Lower bounds presented below serve as con-
servative measures of the chemotherapy agent/the anti-angiogenic 
agent concentrations.

Below the vector field of (1) is denoted by f . Firstly, the follow-
ing lemma is presented:

Lemma 1. All compact invariant sets are located in

K1 = {0 ≤ x1 ≤ x1 max := 1}; (3)

K2 = {ymin := δ

ξ + d1 + d2
≤ y ≤ ymax := δ

ξ
};

K3 = {wmin := φ

η + d3
≤ w ≤ wmax := φ

η
}.

Proof. Upper bounds in the formula (3) are easily derived by 
means of coordinate localizing functions h1 = x1; h2 = y; h3 = w . 
Now lower bounds for y and w will be denoted by ymin and 
wmin. It follows from applying the function h2 = y that the set 
S(h2) is contained in the set defined by the inequality δ ≤ (ξ +
d1 +d2)y. So the last inequality yields the localization set {ymin :=

δ
ξ+d1+d2

≤ y}. Similarly, by using the function h3 = w the localiza-

tion set {wmin := φ
η+d3

≤ w} can be obtained. �
Bounds x1 max; ymax; wmax were got earlier in [14] and derived 

here in order to illustrate how the LMCIS works. Next, in order to 
obtain ultimate upper bounds for cells populations x2 and x3 the 
localizing function h4 = x2 + cx3 is proposed to be exploited; here 
c is a positive parameter defined below. Then the formula
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