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We present a construction of an improved two-mode model for modeling the dynamics of interacting 
ultra-cold bosons confined in a one-dimensional double well trap. Unlike in the typically used two-mode 
model based on the lowest single-particle eigenstates of the external potential, the improved model uses 
a basis of properly chosen effective wave functions originating in the many-body model. Accuracy of 
the improved model is examined and it is shown that within a certain limit of inter-particle interaction 
strength, the model recovers an exact evolution of the wells’ populations much more closely than the 
traditional two-mode model.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Dynamical properties of ultra-cold gases have been enjoying in-
creasing interest since the experimental achievement of the Bose–
Einstein condensation in 1995 [1,2]. Modern experimental meth-
ods, including advanced trapping techniques and controlling of 
mutual interactions, enable experimental investigation of many 
problems which would previously be considered on a theoretical 
level only. This opens a whole new research field of strongly corre-
lated systems with potential applications in such fields as quantum 
computing or quantum simulating of condensed matter problems 
[3–6]. One example of a widely studied problem in the field is 
the system of a few particles confined in a double-well potential 
[7–17]. Such systems have been realized experimentally, and used 
to study the physics of bosonic condensates with a great effect 
[18–23].

On a theoretical level, the dynamics of bosons in a double-well 
system is usually studied in a framework of a simplified two-mode 
model. The model relies on the assumption that all particles oc-
cupying a particular well can be described with a single orbital. 
Thus, the single-particle basis is limited to two modes, chosen as 
the lowest-energy wave functions localized in the left and the right 
well, respectively. They are constructed from the ground and the 
first excited eigenstate of the single-particle Hamiltonian. In con-
sequence, the dynamics of the bosonic system can be calculated al-
most straightforwardly [24–28]. Although the model is commonly 
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used, its applicability is essentially limited. The fundamental as-
sumption hidden in this approximation is that the on-site inter-
action energy is much smaller than the excitation energy needed 
to reach higher energy levels. It means that the model becomes 
increasingly inadequate when the interaction strength increases. 
Additionally, the model completely neglects local inter-particle cor-
relations. In a strong-interaction regime, local multi-particle corre-
lations arise in each well and so the particles in a single site can 
no longer be adequately described [29–32].

For intermediate interactions, some improvement of the two-
mode approach can be conceived. In the traditional approach, 
the shapes of the single-particle wave functions are entirely in-
dependent of the interaction strength. By taking into account an 
influence of inter-particle interactions on the shape of single-
particle wave functions, the two-mode description can be im-
proved. Techniques of obtaining improved orbitals through varia-
tional and mean-field methods have been studied assuming time-
independent [33,34] as well as time-dependent [35–37] orbital 
wave functions.

In this paper we investigate a different, much simpler method, 
of obtaining an effective time-independent two-mode basis. In our 
approach the shapes of the basis wave functions emerge natu-
rally after diagonalization of the single-particle density matrix of 
properly chosen eigenstates of the many-body Hamiltonian. We 
describe a construction of such an effective basis for a system 
of two, three, and four interacting bosons in a one-dimensional 
double-well potential. Then, we examine an accuracy of the re-
sulting two-mode model by comparing its predictions with those 
obtained by both the exact model and the traditional two-mode 
model. It is shown that the effective model indeed allows one to 
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extend validity of two-mode approximations to higher interaction 
strengths.

2. The system under study

We consider a system of N spinless bosons of mass m, con-
fined in a one-dimensional double-well potential V (x) and inter-
acting via short-range interactions. We concentrate on systems of 
N = 2, N = 3, and N = 4 particles, but generalization to larger 
Ns, besides numerical complexity, is straightforward. The short-
range inter-particle interaction is approximated with a point-like 
potential gδ(x − x′), where the parameter g , related to the s-wave 
scattering length, controls the interaction strength [38]. Note that 
in the one-dimensional case the Dirac δ function is a well-defined 
self-adjoint Hermitian operator and therefore it does not require 
any regularization [39]. We focus on repulsive interactions, g > 0. 
Experimentally, a quasi-one-dimensional geometry can be realized 
by introducing a strong harmonic confinement in two remaining 
spatial directions. In this way the dynamics in these directions is 
frozen and particles occupy single ground-states. Consequently, the 
system becomes effectively one-dimensional.

The many-body Hamiltonian of the system, expressed in the 
second quantization formalism, has the form:

Ĥ =
∫

dx �̂†(x)H0�̂(x) + g

2

∫
dx �̂†(x)�̂†(x)�̂(x)�̂(x). (1)

Here �̂(x) is a bosonic field operator that annihilates a particle at 
position x. The operator fulfills the bosonic commutation relations, [
�̂(x), �̂†(x′)

]
= δ(x −x′) and 

[
�̂(x), �̂(x′)

]
= 0. The single-particle 

part of the Hamiltonian has a form

H0 = − h̄2

2m

d2

dx2
+ V (x). (2)

We model an external double-well potential V (x) as a combination 
of a harmonic oscillator potential with frequency �, and a Gaus-
sian barrier which separates the central region into two wells:

V (x) = h̄�

[
m�

2h̄
x2 + λexp

(
−m�

2h̄
x2

)]
. (3)

The height of the barrier is directly related to the dimensionless 
parameter λ. In further discussion, we use natural harmonic oscil-
lator units, i.e., energy is measured in h̄� and length in 

√
h̄/m�.

The spectrum of H0 can be found numerically via an exact di-
agonalization on a dense grid in position representation, giving a 
set of eigenfunctions �i(x) and their corresponding eigenenergies 
Ei [30]. Following the harmonic oscillator convention, we number 
the individual states beginning from i = 0. For λ = 0, obviously the 
well-known harmonic oscillator spectrum is recovered.

In the analysis of double-well problems, it is usual to adopt a 
basis of single-particle wave functions {ϕLi(x), ϕRi(x)}, where the 
individual states are localized respectively in the left or the right 
well. These states are constructed as combinations of the odd and 
even eigenstates of the Hamiltonian:

ϕRi(x) = 1√
2
(�2i(x) + �2i+1(x)),

ϕLi(x) = 1√
2
(�2i(x) − �2i+1(x)). (4)

Although states {ϕσ i(x)} are not eigenstates of the single-particle 
Hamiltonian H0, they form an orthonormal basis. In this basis 
the Hamiltonian H0 has both, diagonal (average energies) and off-
diagonal (tunnelings) elements:

∫
ϕ∗

σ i(x)H0ϕσ ′ j(x)dx = δi j [δσσ ′ Ei − (1 − δσσ ′) J i] , (5)

where

Ei = E2i+1 + E2i

2
, J i = E2i+1 − E2i

2
. (6)

The field operator �̂(x) can be decomposed as

�̂(x) =
∑

i

[
ϕLi(x)âLi + ϕRi(x)âRi

]
, (7)

where âσ i annihilates a boson in state ϕσ i(x). For numerical pur-
poses the summation index i in the decomposition (7) is limited 
to some cutoff number imax . In the case of the system under study, 
we have verified that imax = 15 is sufficient, as the final results do 
not change significantly for larger imax . Therefore in further discus-
sion, we will treat the Hamiltonian with imax = 15 as equivalent 
to the full many-body Hamiltonian (1). By substituting (7) into (1), 
the Hamiltonian can be written as:

Ĥ =
∑

i

[
Ei(â

†
LiâLi + â†

RiâRi) − J i(â
†
LiâRi + â†

RiâLi)
]

+ 1

2

∑
I J K L

U I J K Lâ†
I â

†
J âK âL, (8)

where the indices I, J , K , L represent double-indices (σ , i) identi-
fying single-particle states ϕσ i(x). The interaction terms U I J K L can 
be calculated as:

U I J K L = g

∞∫
−∞

ϕ∗
I (x)ϕ∗

J (x)ϕK (x)ϕL(x)dx. (9)

The spectrum of the Hamiltonian (8) can be calculated numeri-
cally. To do so, we express the Hamiltonian in a matrix form in 
the N-particle Fock basis and diagonalize it. Then all properties of 
the system at any moment can be determined.

Here, our aim is to predict the time evolution of the interact-
ing system of bosons being initially located in the lowest single-
particle state of the chosen well. Namely we assume that initially 
the many-body state of the system is

|ini〉 = 1√
N

(
â†

R0

)N |vac〉. (10)

It means that the state of the system at any later moment t can 
then be calculated straightforwardly as

|�(t)〉 =
∑

k

exp

(−iεkt

h̄

)
〈k|ini〉|k〉, (11)

where |k〉 and εk are the eigenstates and their corresponding 
eigenenergies of (8), respectively. It is important to note that |k〉
and εk depend directly on interaction strength g . However, to sim-
plify the notation we do not write out this dependence explicitly.

3. Two-mode approximation

A two-mode model is a natural approximation of any double-
well system. Routinely, it involves choosing imax = 0 in the decom-
position (7), i.e., the single-particle state basis is limited to the two 
lowest energy states, ϕL0(x) and ϕR0(x). Then the field operator 
�̂(x) can be approximated by

�̂(x) ≈ ϕL0(x)âL0 + ϕR0(x)âR0. (12)

By substituting (12) into the Hamiltonian (1), the two-mode many-
body Hamiltonian is obtained, and similarly to the full-mode 
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