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An endogenous reconnection process involves a driving factor that lays inside the layer where a drastic 
change of magnetic field topology occurs. A process of this kind is shown to take place when an 
electron temperature gradient is present in a magnetically confined plasma and the evolving electron 
temperature fluctuations are anisotropic. The width of the reconnecting layer remains significant even 
when large macroscopic distances are considered. In view of the fact that there are plasmas in the 
Universe with considerable electron thermal energy contents this feature can be relied upon in order to 
produce generation or conversion of magnetic energy, high energy particle populations and momentum 
and angular momentum transport.

© 2017 Elsevier B.V. All rights reserved.

Magnetic reconnection processes have received increased atten-
tion lately as their effects have been proposed for the explanation 
of a variety of observations from space physics, such as the high 
energy particle production at the edge of the Heliosphere, to high 
energy astrophysics.

Now, the existence of endogenous magnetic reconnection pro-
cesses is proposed whose characteristic feature is that their driving 
factor is contained within the region where a drastic change of 
magnetic field topology is produced. In contrast with this, well 
known reconnection processes such as those represented by the 
Sweet–Parker model or the resistive internal kink mode [1] are 
driven by factors (e.g. flows or plasma pressure gradients) that are 
outside the reconnection region.

The reconnecting mode that is discussed in the following is of 
the propagating type with a characteristic phase velocity and the 
two-fluid theory [2] on which it is based applies to weakly col-
lisional regimes. Another significant finding is that the identified 
kind of mode involves widths of the layer in which reconnection 
takes place that remain relevant even when large macroscopic dis-
tances, such as those of interest to space and astrophysics, are 
considered.

We note that, the commonly held view that the main result of 
reconnection events is the violent conversion of magnetic energy 
into thermal energy, as is the case for large solar flares, is shown 
not to be correct in general. For instance, the main effect of the 
resistive internal kink mode [1], that can be excited near the center 
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of toroidal plasma columns and involves magnetic reconnection, is 
of redistributing the radial profile of the plasma pressure.

The presence of a significant electron temperature gradient is a 
necessary feature of the reconnecting modes analyzed in this letter. 
Since in the Universe there are plasmas with considerable electron 
thermal energy contents it makes sense to rely on this feature to 
generate, through magnetic field reconnection, high energy particle 
populations, momentum and angular momentum transport and, in 
any case, conversion of electron thermal energy or of magnetic en-
ergy into each other.

The simplest equilibrium configuration that can be analyzed 
in weakly collisional regimes is the “sheared field configuration” 
in a plane geometry represented by B � B0(x)ez + B y(x)ey and 
sketched in Fig. 1. The steps needed in order to transfer, with 
clear limitations, the results obtained for this plane configuration 
to cylindrical and axisymmetric toroidal configurations have been 
indicated previously [2].

The (normal) modes that we consider involve magnetic field 
perturbations represented by B̂ = B̃(x) exp(−iωt + iky y + ikz z). 
The gradients of the particle density and temperatures are as-
sumed to be significant for |x| = |x0| > 0, as we choose to analyze 
modes such that k · B(x = x0) = kz B0(x0) + ky B y(x0) = 0 and, for 
B2

0 >> B2
y with B0 � const, k · B � (ky B ′

y)(x − x0) around x = x0. 
In particular, we refer to modes with k2

y � |∂2/∂x2| in the region 
where reconnection takes place.

The electron and ion temperatures, Te and Ti , are considered to 
be nearly isotropic in the equilibrium state but to have a different 
evolution in the perturbed state. In particular, we take T̂e⊥ �= T̂e‖
on account of the large anisotropy of the electron thermal con-
ductivity. Then we note that ∇ · Pe = ∇pe⊥ + [B · ∇( ¯̄peB)]/4π
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Fig. 1. Sketch of the simplest sheared field configuration.

where ¯̄pe = 4π(pe‖ − pe⊥)/B2. Consequently ∇ · P̂e � ∇ p̂e⊥ +
nB[B · ∇(T̂e‖ − T̂e⊥)]/B2. We refer to weakly collisional regimes 
where vee , the electron–electron collision frequency, is consider-
ably smaller than |ω| considering that, as we shall show, ω ∼
ωdi ≡ [kyc/(enB)](dpi/dx). Clearly, |ω|2 
 �2

ce and in the consid-
ered regimes T̂e⊥ � −ξ̂xdTe/dx, that is justified by the validity of 
the “equation of state” d[pe⊥/(Bn)]/dt = 0. Here ξ̂x = ûEx/(−iω)

and ûE represents the Ê × B drift velocity.
Referring to T̂e‖ that, under the condition vee < |ωdi |, is decou-

pled from T̂e⊥ , we notice that in the limit of very large longitudi-
nal thermal conductivity

(B̂ · ∇Te‖) = B̂x
dTe

dx
+ i

(
ky B ′

y

)
(x − x0)T̂e‖ � 0. (1)

Clearly, Eq. (1) indicates that when B̂x(x = x0) �= 0, T̂e‖ would be-
come singular [2] if (dTe/dx) �= 0, unless a transverse diffusion 
term is introduced in the relevant thermal energy balance equa-
tion. On the other hand the localized modes that we shall identify 
are characterized by eigenfunctions B̃x that are odd in (x −x0), that 
is B̃x � (x − x0)(dB̃x/dx) � −iky(x − x0)B̃ y . Clearly, for modes that 
have one important component of B̃x that is odd in x − x0 within 
δm , where δm represents the width of the layer where reconnection 
takes place,

i(k · B)(T̃e‖ − T̃e⊥) � −dTe

dx

[
B̃x − i(k · B)ξ̃x

]
. (2)

We observe that Eq. (1) can be justified under the condition 
where k2

yδ
4
m/L2

s > De⊥‖/De‖ ‖ , De⊥‖ is the relevant transverse elec-
tron thermal conductivity, De‖ ‖ the longitudinal electron thermal 
conductivity and 1/Ls ≡ B ′

y/B . Moreover, we note that for the 
modes of interest ω < k‖vthe as ω � |ωdi | = kyρi vthi/(2rpi), where 
rpi ≡ −(dpi/dx)−1 pi , and k‖ ∼ kyδm/Ls . Therefore, this condition 
implies ρi/δm < 2(rpi/Ls)(vthe/vthi).

The adopted form of the perturbed total momentum conserva-
tion equation is

−iωnmiûi = −∇
(

p̂i + p̂e⊥ + B̂ · B

4π

)

− n

B2
B
[
i(k · B)(T̂e‖ − T̂e⊥)

]

+ 1

4π

[
i(k · B)B̂ + B̂x

d

dx
B
]
. (3)

Applying the operator ez · ∇× to Eq. (3) and considering ûiz ∼= 0, 
B̂ z ∼= 0, ∇⊥ · ûi � 0, we find that the equation of interest within 
|x − x0| ∼ δm is

−ω(ω − ωdi)

(
d2ξ̃x

dx2
− k2

y ξ̃x

)

+ 1

min

ky B y

B2

d

dx

[
n(k · B)(T̃e‖ − T̃e⊥)

]

� i

4πmin

[
(k · B)

(
d2 B̃x

dx2
− k2

y B̃x

)
− ky

d2 B y

dx2
B̃x

]
. (4)

Here we have taken ũix = −i(ω − ωdi)ξ̃x and d2 B y/dx2 = (4π/

c)(d J z/dx), J z being the main component of the longitudinal cur-
rent density, and introduce the scale distance az ≡ J z/(d J z/dx).

The longitudinal electron momentum conservation equation has 
a key role in the onset of magnetic reconnection as is well known. 
For the configuration that is being analyzed we adopt the following 
simplified form of this equation

0 � −
(

̂B

B
· ∇pe‖

)
− en(Ê‖ + iωLI Ĵ‖), (5)

where ̂B · ∇pe‖/B = ik‖ p̂e‖ + (B̂x/B)dpe/dx, p̂e‖ = n̂e Te + nT̂e‖ , and 
we neglect, at first, the contribution of a small but finite electri-
cal resistivity. Instead, we have introduced [3] the inductivity LI

that is expected to prevail in the very low collisionality regimes 
that are being considered. In addition, we take B̂ = ∇ × Â and 
Ê = −∇	̂ + i(ω/c)Â and adopt a frame of reference where no 
E × B velocity exists in the equilibrium state, that is d	/dx = 0. 
The vector potential Â is primarily in the z-direction, i.e., Â � Âzez . 
Then B̃x � iky Ãz , B̃ y � −dÃz/dx, B̃ z � 0, Ẽx � −d	̃/dx, Ẽ y �
−iky	̃, and Ẽ z = −ikz	̃ + i(ω/c) Ãz . In particular, Ẽ‖ ∼= −ik‖	̃ +
i(ω/c) Ãz ∼= −ik‖	̃ + i[ω/(cky)]B̃x . The components of the Ẽ × B
drift velocity, are ũEx � −icky	̃/B , ũE y � (c/B)(d	̃/dx) and ũEz =
−c(B y/B2)(d	̃/dx). Thus ∇ · ûE � 0, as (kz/ky)(B y/B0) << 1, and 
Ẽ‖ � ω[B̃x − i(k · B)ξ̃x]/(cky). We determine ñe entering p̃e‖ from 
the simplified electron mass conservation −iωñe + ũExdn/dx ∼= 0, 
where the effects of particle transport and the contribution of 
ũe‖ have been regarded to be less important than that of the 
plasma inductivity when considering Eq. (5) at the same time. 
Then, ñe � −ξ̃xdn/dx and, as (kz/ky)(B y/B0) << 1, k2

y � |∂2/∂x2|, 
we have J̃‖ � ic(d2 B̃x/dx2 −k2

y B̃x)/(4πky). Furthermore, we define

LI ≡ 4π

c2
d2

I , (6)

where dI is the “inductive skin depth”. With T̃e‖/Te given by 
Eq. (1), the equation that can be derived from the combination 
of Eqs. (5) and (6) is(

1 − ω∗e

ω

)
B̃x � i(k · B)

(
1 − ω∗e

ω

)
ξ̃x + d2

I

(
d2 B̃x

dx2
− k2

y B̃x

)
, (7)

where ω∗e = −ky[cTe/(eB)](d ln n/dx). We define x̄ ≡ (x − x0)/δm . 
Then Eq. (7) can be rewritten as

B̃x(x̄) ∼= i
(
k ·B′)x̄ξ̃x(x̄)δm + ω

ω − ω∗e

d2
I

δ2
m

[
d2 B̃x(x̄)

dx̄2
−ε2

k B̃x(x̄)

]
, (8)

where ε2
k ≡ k2

yδ
2
m , and we consider |ω| ∼ |ω − ω∗e|. We shall find 

that δ2
m < d2

I for a realistic set of parameters.
Now we have the option to consider localized modes for which 

|d2 B̃x/dx̄2|/B̃x ∼ 1, within the δm-region or extended modes for 
which B̃x(x̄) � B̃x0 = const. and B̃x � B̃x0[1 + (δ2

m/d2
I )ϕ0(x̄)]. In the 

former case Eq. (8) reduces to
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