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Low-frequency transverse wave propagation plays a significant role in the out-of-plane vibration control. 
To efficiently attenuate the propagation of transverse waves at low-frequency range, this letter proposed 
a new type phononic beam by attaching inertial amplification mechanisms on it. The wave propagation of 
the beam with enhanced effective inertia is analyzed using the transfer matrix method. It is demonstrated 
that the low-frequency gap within inertial amplification effects can possess much wider bandwidth than 
using the local resonance method, thus is more suitable for designing applications to suppress transverse 
wave propagation.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The band gaps capable of inhibiting wave propagation found 
in phononic crystals [1–5] or acoustic metamaterials [6–10] have 
been the focus of extensive research efforts in recent years. The 
Floquet–Bloch theory allows one to investigate the wave motion of 
the infinite medium through modeling a representative unit cell. 
Numerical approaches including the transfer matrix method [11,
12], the multi-scattering theory [13,14], the plane wave expansion 
method [15,16] and the finite element method [17,18], etc., have 
been widely employed to obtain the band gaps of the unit cell 
models in literatures.

It is well known that the design of ultra wide low-frequency 
gap has a significant practical meaning. In previous studies, 
phononic band gaps in periodic structures are predominantly cre-
ated by the means of Bragg scattering and local resonance [19–25]. 
An underlying constraint in the Bragg gaps is that the wavelength 
should be comparable to the lattice constant. Thus to create low 
frequency Bragg gaps, high density/low modulus materials or large 
sized structures are utilized to realize the requirement of low 
wave speed or large lattice constant [26]. In contrast to Bragg 
gaps, band gaps due to the addition of local resonators can be 
achieved at much lower frequencies. However, the bandwidth of 
the local resonance gap strongly depends on the mass of resonator, 
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which implies that heavy resonator is needed to generate wide 
low-frequency local resonance gap [27,28]. In order to broaden or 
shift downward the low-frequency gap, increasing research efforts 
have been concentrated on the design of local resonant struc-
tures [29–32]. An alternative approach for creating band gaps is 
using the inertial amplification concept, which was proposed by 
Yilmaz, et al. [28,33]. Stop bands are generated with enhanced 
effective inertia by amplifying the motion of a small mass. This 
method has an advantage that one can obtain wide low-frequency 
gaps without sacrificing the stiffness or increasing the overall mass 
[34–37]. The provided applications of inertial amplification mecha-
nisms have been used to serve as backbone structural components 
until Frandsen, et al. [38] proposed to employ them to create band 
gaps in a continuous structure. In their work, the longitudinal wave 
characteristics of a continuous rod with a periodic array of iner-
tial amplification mechanisms were investigated. However, to the 
knowledge of the authors, there are no studies conducted to isolate 
flexural or transverse wave propagation using the inertial amplifi-
cation induced gaps.

In this letter, we extend the inertial amplification concept to 
the design of phononic beams for transverse wave attenuation 
in continuous structures. The proposed one-dimensional system 
consisting of the elastic beam and periodically attached inertial 
amplification mechanisms is expected to show an ultra wide low-
frequency gap. The band structure is calculated via a combination 
of the Bloch theorem and the transfer matrix method in this work. 
Following the introduction, we present the unit cell model and de-
rive the methodology to analysis the band structures. Then the 
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Fig. 1. Schematic diagram of the beam with inertial amplification mechanisms: 
(a) an infinite beam, (b) a unit cell model.

numerical results of inertial amplification induced band gaps are 
given in Section 3. We further demonstrate that the beam with in-
ertial amplification mechanisms can possess larger bandwidth than 
placing local resonators on it. At last, the conclusions are drawn in 
Section 4.

2. Descriptions and model formulations

The one-dimensional elastic beam is assumed as an Euler–
Bernoulli beam. In previous works the lumped parameter lattices 
embedded with inertial amplification effects are mostly studied 
to show the band structure. The inertial amplification mechanism 
constituting these parametric models is often analyzed to estimate 
the location of induced band gaps and is simplified in [38] when 
attached to a continuous rod. This work employs this idealized 
configuration as the additional inertial amplification unit. Fig. 1
gives the version of an Euler–Bernoulli beam with periodically dis-
tributed inertial amplification mechanisms in x direction.

The band structure calculations are performed through mod-
eling a representative unit cell. As seen in Fig. 1(b), the length 
of the unit cell is assumed as L. The vertical and inclined links 
shown by heavy lines denotes the rigid connections and the cor-
ners between them are designed as moment-free hinges in the 
mechanism. A similar hinge is also used at the top connection [38]. 
In this way, no moment is transferred through the mechanism. 
Hence, the connections do not deform but move the amplifica-
tion mass by rigid-motion. If an out-of-plane excitation is exerted 
on the beam foundation, the constraint forces between the beam 
and the mechanism will be produced to restrict the amplification 
mass ma to move in xoy plane. The motion of mass ma quantified 
by z1 and z2 is governed by the displacements at the attachment 
points w1, w2 and the amplification angle θ , where x = L1 and 
x = L − L1. In order to determine these forces, the motion on mass 
ma is investigated first. We notice that in-plane extensional vibra-
tion is omitted in this study.

The top parts of the static and deformed inertial amplification 
mechanism are illustrated in Fig. 2. The constraint forces are de-
noted by P1 and P2. In static condition, the length of the rigid 
connection is l and the height of mass ma is H . It is easily known 
that the vertical motions of incline connections are equal to the 
transverse displacements w1, w2. Using the Lagrange’s equations, 
the governing equations for this mechanism with applied forces P1

and P2 can be derived (see Appendix A for details)

Fig. 2. The motion of mass ma in the inertial amplification mechanism.

me1 ẅ1 − me2 ẅ2 = P1

me1 ẅ2 − me2 ẅ1 = P2
(1)

where me1 = ma
4 (1 + tan2(θ)), me2 = ma

4 (tan2(θ) − 1). From Eq. (1), 
one can notice that the constraint forces are proportional to the 
relative acceleration at the attachment points, thus amplifying the 
effective inertia of the host beam.

The transfer matrix method is adopted to investigate the prop-
agation of transverse waves. The governing equation for the out-
of-plane displacement w(x) of the continuous beam with applied 
forces is

E I
∂4 w

∂x4
+ ρ Aẅ = −P1δ(x − L1) − P2δ(x − L + L1) (2)

where E and ρ are the elastic modulus and the density of the 
beam; the cross-sectional area and the area moment of inertia 
are denoted by I and A. Assuming time-harmonic motion w =
W exp(−iωt), P j = P̃ j exp(−iωt), the homogeneous solution for a 
uniform Euler–Bernoulli beam is

W (x) = A exp(ikx) + B exp(−ikx) + C exp(−kx) + D exp(kx) (3)

where k = (ρ Aω2/E I)1/4. We can observe that there are two wave 
types, transverse and evanescent waves, composing the solution. 
The terms exp(ikx) and exp(−ikx) represent the right- and left-
going transverse waves and the terms exp(−kx) and exp(kx) rep-
resent the right- and left-going evanescent waves. This formulation 
can also be employed to determine the displacement field in some 
segments of the unit cell [39–41]. The nth unit cell is able to be 
divided into three segments. The transverse displacements of these 
segments are

Wn1 = An1 exp(ikx) + Bn1 exp(−ikx) + Cn1 exp(−kx)

+ Dn1 exp(kx), 0 ≤ x ≤ L1

Wn2 = An2 exp(ikx) + Bn2 exp(−ikx) + Cn2 exp(−kx)

+ Dn2 exp(kx), L1 ≤ x ≤ L − L1

Wn3 = An3 exp(ikx) + Bn3 exp(−ikx) + Cn3 exp(−kx)

+ Dn3 exp(kx), L − L1 ≤ x ≤ L

(4)

It is noted that the transverse wave motion amplitude for n −
1th cell can also be decomposed of these displacement functions 
with different coefficients. The continuities of displacement, slope, 
bending moment, and shear force at the attachment points, i.e., 
x = L1 and x = L − L1, are given by
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