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An example of a graph that admits balanced fractional revival between antipodes is presented. It is 
obtained by establishing the correspondence between the quantum walk on a hypercube where the 
opposite vertices across the diagonals of each face are connected and, the coherent transport of single 
excitations in the extension of the Krawtchouk spin chain with next-to-nearest neighbour interactions.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This article provides an example of a graph that exhibits bal-
anced fractional revival (FR) at two sites. FR [1] is observed during 
a quantum walk process when an initially localized state evolves 
so that after some time it has non-vanishing probability amplitude 
uniquely at a number of isolated places. FR is said to be balanced 
if these probabilities are equal at each site. This phenomenon has 
been shown to occur in spin chains [2,3]. In these systems, a state 
having at first a single excitation at one end is found, after finite 
time, with non-zero amplitudes for this spin up, only at both ends. 
Balanced FR can thus serve as a mechanism to generate maximally 
entangled states.

A special case of fractional revival is when the revival takes 
place at a single site (with probability one). If this site is the one 
where the spin up was initially located, perfect return occurs. Oth-
erwise, if it is a different site (for instance the opposite end of 
the chain), one speaks of perfect state transfer (PST). PST in spin 
chains is attracting much interest [4–6] especially for the design 
of quantum wires that would require a minimum of external con-
trol. PST can also be realized in photonic lattices, i.e. in arrays of 
optical waveguides [7,8]. It has been shown that non-uniform cou-
plings are required in these devices for PST beyond a few sites 
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[9]. Favoured models are those where the couplings between the 
nearest neighbours are related to the recurrence coefficients of the 
Krawtchouk polynomials; they are often referred to by that name 
for that reason [10].

These advances have prompted the study of PST in spin net-
works; here the one excitation Hamiltonian is provided by the 
adjacency matrix of the underlying graph. PST on graphs has been 
much analysed and the reader is invited to read [11] and [12] for 
reviews. Little consideration has been given to FR on graphs how-
ever. A significant observation that has been made [9,13] is that 
PST between antipodes of the one-link hypercube is tantamount 
to end-to-end perfect transport in the Krawtchouk spin chain. This 
is established by showing that the quantum walk on the graph 
projects onto the one on the line or P N , with appropriate weights 
for the N links. PST occurs in the Krawtchouk chain with nearest-
neighbour (NN) couplings; it is however easy to check that FR is 
not possible in this model. In view of the preceding point, the 
same goes for the hypercube, namely this graph will not support 
FR.

As it turns out, an extension of the NN-Krawtchouk model that 
includes interactions between next-to-nearest neighbours (NNN) 
has been designed recently [14] and found to admit balanced FR 
under certain conditions. We shall use these results here, to find 
a graph with FR, by showing that the quantum walk between an-
tipodal points on that graph projects equivalently to the NNN one-
excitation dynamics of the chain known to have FR. This graph will 
be identified as a hypercube where the opposite vertices across 
the diagonals on each face are connected and where all these links 
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have the same weight relative to the one attributed to the edges 
of the hypercube.

The remainder of the paper will proceed as follow. We shall 
first remind the reader of the NNN extension of the Krawtchouk 
spin chain and of its PST and FR properties. We shall follow by 
reviewing basic features of Hamming graphs and their adjacency 
matrices. Their relation to the Krawtchouk polynomials will be 
brought up. We shall further recall how the connection between 
quantum walks on the hypercube and on the one-dimensional 
graph with Krawtchouk weights is made by restricting the adja-
cency matrix to an appropriate “column” subspace. We shall then 
determine the graph whose restriction to that subspace yields the 
NNN one-excitation dynamics. Concluding remarks will be offered 
and the paper will end with an Appendix where the occurrence of 
FR on the graph is verified directly.

2. Fractional revival in the Krawtchouk spin chain with 
next-to-nearest neighbour interactions

We shall consider a spin chain with the following Hamiltonian 
of type XX on (C)⊗N where N spins interact with their nearest 
and next-to-nearest neighbours:
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where J (1)
N = 0 and J (2)

N = J (2)
N−1 = 0. As usual, σ x

n , σ y
n and σ z

n stand 
for the Pauli matrices with the index n indicating on which of the 
C factors they act.

The coupling constants are built from the recurrence coeffi-
cients of the Krawtchouk polynomials [15]. (See (19) below.) Let

Jn = 1

2

√
n(N − n). (2)

The nearest-neighbour (NN) couplings are taken to be

J (1)
n = β Jn (3)

with β an energy scale parameter. The next-to-nearest neighbour 
(NNN) couplings are chosen as

J (2)
n = α Jn Jn+1 (4)

with α another parameter. Finally, the Zeeman terms will be spec-
ified by

Bn = α( J 2
n + J 2

n−1). (5)

Observe that when α = 0, J (2)
n = Bn = 0 and the NN Krawtchouk 

model with no magnetic field is recovered. Note also that slight 
changes have been made with respect to [14]: we are here tak-
ing N (instead of N + 1) to be the total number of sites and have 
modified the range of n accordingly.

Owing to rotational symmetry around the z-direction, H pre-
serves the total number of spins that are up along the chain. It 
will suffice here to consider chain states that have only one exci-
tation or spin up. A natural basis for that subspace is given by the 
vectors

|n〉 = (0,0, ...,0,1, ...0)T n = 1, ..., N (6)

with the only 1 in the nth position. This vector is associated to a 
single spin up at the nth site. The action of H on those state is

H |n〉 = J (2)
n |n + 2〉 + J (1)

n |n + 1〉 + Bn |n〉 + J (1)
n−1 |n − 1〉

+ J (2)
n−2 |n − 2〉 . (7)

We remark that if we define the matrix J by

J |n〉 = Jn |n + 1〉 + Jn−1 |n − 1〉 (8)

we have

H |n〉 = (α J 2 + β J ) |n〉 . (9)

Fractional revival (FR) at two sites occurs if there is a time τF R

such that

e−iτF R H |n〉 = μ |0〉 + ν |N〉 (10)

with μ, ν ∈ C such that |μ|2 + |ν|2 = 1. In other words, FR takes 
place if the dynamics allows to evolve the state with a spin up lo-
calized at site 1 into a state that is “revived” at both ends of the 
chain. FR is balanced when |μ| = |ν| = 1√

2
in which case, a maxi-

mally entangled state has been generated at time τF R . The special 
case of FR that happens when μ = 0 is referred to as perfect state 
transfer (PST) since the spin up at site 1 is then transported at site 
N with probability one after a time we will denote τP ST . The NN 
Krawtchouk chain (α = 0) is well known to admit PST at τP ST = π

β
.

The coherent transport of single excitation along the NNN 
Krawtchouk spin has been studied in [14]. In summary, the find-
ings are as follows. It is first noted that FR can not be found in 
the NN situation when α = 0. When α �= 0, balanced FR can hap-
pen. Apart from an overall phase factor, μ would be real, ν pure 
imaginary and |μ| = |ν| = 1√

2
. There are conditions on α, β and N .

i. Case β �= 0:
The ratio α

β
must be a rational number:

α

β
= p

q
(11)

where p and q are coprime integers. FR will happen if in ad-
dition,
• p is odd
• q and N have different parities.
The time at which balanced FR will then occur first is

τF R = πq

2β
. (12)

PST will be found in these circumstances at double the FR 
time: τP ST = 2τF R . PST is also possible at τP ST = πq

β
if p is 

even and q odd even though FR can not be realized in this 
case.

ii. Case β = 0:
FR and PST as well, are possible only when N is odd. The min-
imal times are for FR,

τF R = π

2α
(13)

and for PST, τP ST = 2τF R .

3. Elements of the binary Hamming scheme

We shall now review properties of certain Hamming graphs 
that will be used to obtain a lift to a graph with FR, of the sin-
gle excitation dynamics of the spin chain with NNN couplings that 
we have described in the last section.

Recall that a graph G = (V , E) consists of a set V of vertices 
and of a set E of edges that are two-element subsets of V . Edges 
might be assigned weights. With |V | the cardinality of V , the adja-
cency matrix of a graph G is the |V | ×|V | matrix whose Axy entry 
for x, y ∈ V is equal to the number of edges between the vertices 
x and y.
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