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Equations of energy exchanges in variable density turbulent flows
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This paper establishes a new formulation of the energy exchanges between the different parts of total 
energy. The decomposition uses the Reynolds averaging. This leads to a ternary decomposition of kinetic 
energy into the turbulence kinetic energy, the mean kinetic energy and the mixed kinetic energy, acting 
as an exchange term between the mean and turbulent motion. The formulation is then extended to 
distinguish a mean and fluctuating density part of each part of total energy. The formulation thus 
includes the mean density turbulence kinetic energy, product of the mean density and the half-trace 
of the velocity fluctuation correlation tensor. Its evolution equation is given in the spectral domain.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper addresses the energy exchanges in turbulent flows 
with highly variable fluid properties. This covers flows with a high 
Mach number (high speed flows), such as the flows around a high-
speed aircraft, or through a high speed jet or a nozzle [1], and 
low Mach number flows submitted to a strong temperature gra-
dient, found for instance in heat exchangers, propulsion systems 
or nuclear or concentrated solar power plants [2–8]. The study of 
the energy exchanges between the different parts of total energy 
is a useful tool for both turbulence modeling and the fundamen-
tal understanding of turbulence. More detailed information is ob-
tained through the study of the energy exchanges in the spectral 
domain [9–13,11,14–22]. However, while kinetic energy is funda-
mental property of any flow, it is not the case of its decomposition 
into turbulence kinetic energy and mean kinetic energy.

In incompressible flows with constant fluid properties, such de-
composition is unique. The averaged kinetic energy is decomposed 
clearly, unambiguously and straightforwardly into the sum of two 
contributions: the kinetic energy of the mean motion associated 
with the mean velocity and the kinetic energy of the turbulent 
motion associated with the velocity fluctuation [see e.g. 23,24]. 
In compressible flows with highly variable density, this analysis 
is hindered by additional density velocity correlations. The decom-
position of kinetic energy becomes more complex and arbitrary. 
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It is even more difficult in the spectral domain. The choice ulti-
mately depends on the physical role given to the additional density 
velocity correlations with respect to what constitutes the mean 
motion and the turbulent motion [25]. The most popular and suc-
cessful decomposition extends the incompressible decomposition 
to the compressible case through the introduction of a density 
weighted averaging. This decomposition was widely developed by 
Favre [26,27,28]. Since, it has been used extensively by various 
authors [29–33]. Another approach, the mixed weighted decompo-
sition, mixes density weighted averaging and Reynolds averaging. 
It was first introduced by Bauer et al. [34] and further studied by 
Ha Minh et al. [35,36]. In this formulation, kinetic energy is seen 
as the product of the velocity and the density weighted velocity. 
In a third method, kinetic energy is decomposed using a change 
of variable based on the density square root weighted velocity. 
This decomposition was first proposed by Yih [37] then adopted by 
various authors [38–42]. This change of variable allows the study 
of kinetic energy to be extended easily to the spectral domain. 
Finally, Chassaing [43] [see also 44–46,25] suggested the decom-
position of kinetic energy using the Reynolds averaging. From a 
modeling perspective, the use of the unweighted averaging may be 
advantageous in low Mach number flows, in which the energy con-
servation acts as a constraint on the divergence of the velocity [47]. 
The square of the fluctuating velocity (without the density) is also 
encountered for instance in the modeling of two-phase flows [48]
or in variable density flows, provided the momentum equation is 
divided by the density before averaging [49]. In a variable den-
sity setting, the use of the Reynolds averaging necessarily leads 
to the decomposition of kinetic energy into three parts, called 
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ternary decomposition. The kinetic energy is thus split into tur-
bulence kinetic energy, mean kinetic energy and a mixed kinetic 
energy, related to both the mean and turbulent motion. However, 
we believe the underlying idea behind the ternary decomposition 
has not been taken to its logical conclusion as no interaction be-
tween the mixed kinetic energy and another part of total energy 
was identified.

This paper aims to establish a new formulation of the energy 
exchanges between the different parts of total energy in a ternary 
decomposition that gives to the mixed kinetic energy a full role. 
The formulation is compared to the formulation of Chassaing [43]
and the differences between the two formulations with regard to 
the physical interpretation of the terms are discussed. We then 
take the decomposition further and split the density into a mean 
and fluctuating part. This leads to the definition of the mean den-
sity part of total energy and the fluctuating density part of total 
energy. The mean density turbulence kinetic energy, product of the 
mean density and the half-trace of the velocity correlation tensor, 
appears in the mean density part of the decomposition as exchang-
ing energy with the other parts of total energy. This quantity is 
approximately equal to the turbulence kinetic energy in flows sat-
isfying Morkovin’s hypothesis [50].

Once the new formulation of the energy exchanges established, 
we focus more specifically on the mean density turbulence kinetic 
energy. We establish its evolution equation in spectral domain, rec-
ognizing that the mean density turbulence kinetic energy has with 
the Reynolds averaging a clear spectral equivalent. The spectral 
equation extends the spatial equation to the spectral domain, asso-
ciating to each spatial term a spectral equivalent. To the knowledge 
of the authors, this has not been achieved in the literature for vari-
able density flows. A purely spectral term that redistributes the 
energy between scales is identified, as in the work of Lee and 
Moser [21] and [22]. In order to carry out the Fourier transform, 
we consider a flow with two homogeneous and periodic directions. 
This does not lead to a loss of generality as the equations given 
may easily be adapted to a flow with one or three homogeneous 
directions.

The complete representation of the energy exchanges between 
the different parts of total energy is presented in section 2 and 
the equation of the mean density turbulence kinetic energy in the 
spectral domain in section 3.

2. Energy exchanges between the different parts of total energy 
in the ternary decomposition

2.1. General considerations

In this section, we describe a new formulation of the energy 
exchanges between the different parts of total energy in a ternary 
decomposition. We will establish the formulation obtained from 
the decomposition of velocity, but not density, with the Reynolds 
averaging, referred to as the one-stage formulation in this paper, 
and from the decomposition of both the velocity and density, re-
ferred to as the two-stage formulation in this paper. The two-stage 
formulation is required to write the spectral equation of the mean 
density turbulence kinetic energy. We first define here a few use-
ful quantities and give some general remarks on the derivation of 
the formulation.

The total energy per unit volume ρ(E + I) is a conservative 
quantity. Its components however are not as they exchange en-
ergy among themselves. In the following, the evolution equation 
of each part of total energy in the ternary representation will be 
given and we will identify the energy exchanges between these 
quantities. Many consistent formulations of the energy exchanges 
can be proposed. The formulation was devised according to the 
following criteria:

• Each term of the formulation must be either interpreted as a 
conservative energy transfer or an interaction with exactly one 
of the other parts of total energy.

• If a term is to be interpreted as a conservative energy transfer, 
it must be written in a conservative form, that is as a di-
vergence; otherwise, it must be written in a non-conservative 
form.

• The formulation must be symmetrical, in particular with re-
spect to the manner in which it deals with fluctuations and 
statistically averaged quantities.

• The formulation must correctly behave when considering a 
limit case such as laminar, homogeneous or incompressible 
flows. In particular, a quantity that becomes instantaneously 
equal to zero must not be associated with any energy ex-
change.

We consider a non-relativistic compressible flow with highly 
variable fluid properties under the continuity hypothesis. With-
out loss of generality, no body forces are taken into account which 
means gravity is neglected and there is no heat source. The flow 
is governed by the Navier–Stokes equations under the following 
form [51]:

• mass conservation

∂ρ

∂t
+ ∂ρU j

∂x j
= 0, (1)

• momentum conservation

∂ρUi

∂t
+ ∂ρU j Ui

∂x j
= ∂Υi j

∂x j
, (2)

• energy conservation

∂ρ I

∂t
+ ∂ρU j I

∂x j
= ∂

∂x j

(
λ

∂T

∂x j

)
+ Υi j

∂Ui

∂x j
, (3)

with ρ the density, T the temperature, I the internal energy per 
unit mass, t the time, Ui the i-th component of the velocity, Υi j
the component of the total stress tensor with the i and j indices 
and xi the Cartesian coordinate in the i-th direction. Einstein sum-
mation convention is used. The total stress tensor Υi j is given by 
the contributions of the viscous shear stress tensor and of the 
pressure stress. We will keep the total stress tensor undissociated 
throughout this paper because the pressure and viscous contribu-
tions are formally similar.

2.2. One-stage formulation

The instantaneous total energy per unit volume ρ(E + I) is 
the sum of the instantaneous kinetic energy per unit volume ρE
and the internal energy per unit volume ρ I . In the ternary de-
composition, the kinetic energy is decomposed into three parts by 
splitting the velocity into a mean and fluctuating part [following 
52], namely Ui = U i + u′

i , where the overline ( ) denotes the sta-
tistical average and the prime symbol (′) the fluctuating part. We 
use a lowercase u′ for the velocity fluctuation for a better visual 
differentiation but there is no further underlying differences. We 
obtain [43]

ρE = 1

2
ρUi Ui = ρE + ρe + ρe, (4)

with ρE = 1
2 ρU i U i the mean kinetic energy, associated with the 

mean motion, ρe = 1
2 ρu′

iu
′
i the turbulence kinetic energy, associ-

ated with the turbulent motion, and ρe = ρu′
i U i the mixed kinetic 
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