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We study the spin-dependent tunneling time, including group delay and dwell time, in a graphene based 
asymmetrical barrier with Rashba spin–orbit interaction in the presence of strain, sandwiched between 
two normal leads. We find that the spin-dependent tunneling time can be efficiently tuned by the barrier 
width, and the bias voltage. Moreover, for the zigzag direction strain although the oscillation period of 
the dwell time does not change, the oscillation amplitude increases by increasing the incident electron 
angle. It is found that for the armchair direction strain unlike the zigzag direction the group delay time 
at the normal incidence depends on the spin state of electrons and Hartman effect can be observed. 
In addition, for the armchair direction strain the spin polarization increases with increasing the RSOI 
strength and the bias voltage. The magnitude and sign of spin polarization can be manipulated by strain. 
In particular, by applying an external electric field the efficiency of the spin polarization is improved 
significantly in strained graphene, and a fully spin-polarized current is generated.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Graphene, carbon atoms in two-dimensional honeycomb lattice, 
was first synthesized by Novoselov et al. in 2004 [1]. In low energy 
regime the charge carriers in graphene can be well described by 
the massless Dirac-like equation with an effective speed of v F ≈
106 m/s near the K and K′ points, which leads to many unusual 
properties, including the half-integer quantum Hall effect [2], the 
minimal conductance [3] Klein tunneling [4], Zitterbewegung [5], 
gate-tunable optical transitions [6], Veselago lensing [7], and so 
on. The generation of a spin-polarized current is a fundamental 
prerequisite for the construction of spintronic devices [8].

In recent years, there have been some investigations on spin-
dependent transport in two dimensional materials experimentally 
[9–11]. Godel et al. investigated the voltage-dependent magneto-
transport properties of vertical spin-valve structures using a thick 
epitaxial MgO barrier as spacer layer and a graphene-passivated 
Ni film as bottom ferromagnetic electrode. They found that by 
varying the bias voltage, the TMR ratio systematically shows three 
distinct regimes, along with a number of sign reversals. The tran-
sitions between regimes are interpreted as the opening/closing 
of spin-polarized conduction channels [9]. The effect of injection 
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bias current and gate voltages on the electrical and spin transport 
properties in graphene-hexagonal boron nitride van der Waals het-
erostructures have been studied by Godel et al. It is found that the 
spin transport measurements at different injection bias current and 
gate voltages confirms tunneling nature of spin injection through 
h-BN barriers [10]. Kamalakar et al. showed that in Ferromagnet 
Hexagonal Boron Nitride-Graphene van der Waals Heterostructures 
the spin filtering effect in cobalt few layer h-BN graphene junc-
tions leading to a large negative spin polarization in graphene at 
room temperature [11]. In addition, graphene spintronics is one 
of the most promising research fields where graphene based ma-
terials are implied in the control of spin-polarized signal. There 
are two types of spin–orbit interactions in graphene; intrinsic 
and Rashba spin–orbit interaction. Intrinsic is negligibly small in 
pristine graphene [12,13], so its effects are usually ignored for 
most purposes. However, other spin–orbit coupling, which can also 
be regarded as the Rashba spin–orbit interaction (RSOI), is in-
duced by different mechanisms such as an external electric field 
perpendicular to the graphene sheet, ad-atoms or presence of a 
substrate. Avsar et al. reported enhancement of the Rashba cou-
pling as large as 17 meV in graphene due to proximity to W S2
substrate [14]. It was recently shown that the interaction of Au 
atoms in graphene grown on Ni substrate produces a large Rashba 
splitting near 100 meV [15], also Calleja et al. observed a giant 
RSOI when Pb is intercalated between graphene and the iridium 
substrate [16]. The extrinsic Rashba originates instead from inter-
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actions with the substrate, presence of a perpendicular external 
electric field, or curvature of graphene membrane [17–20]. Further-
more, recent discoveries show that graphene grown on a flexible 
substrate is capable of sustaining elastic deformations as large as 
20% [21]. This result suggests that the modulation of the elec-
tronic properties of graphene by strain is feasible. It is important 
to note that the strain in graphene nanobubble can produce a gi-
gantic pseudo-magnetic field larger than 300 Tesla [22], and it is 
possible modulate the graphene energy-gap value from zero up to 
900 meV by uniaxial strains [23]. Strain engineering of graphene 
can shift the Dirac points in reciprocal space. All these effects can 
change the transport properties of graphene. Strain in graphene be 
realized using an atomic force microscope (AFM) tip [24] or suit-
able substrate patterning [25,26]. Due to the effect of strain on the 
band structure of graphene, a number of papers studied transport 
properties of strained graphene [27–41]. Wu et al. studied the spin 
and valley-dependent transport in ferromagnetic graphene double 
junctions and found out that the strain combined with magnetic 
vector potentials breaks the valley degeneracy [37]. The valley and 
spin resolved transport in a two-terminal zigzag graphene nanorib-
bon with Rashba spin–orbit interaction has been investigated in 
Ref. [39]. Diniz et al. [39] showed that the strain plays an impor-
tant role in the spin polarized current.

The question of the time spent by a particle or wave packet 
in a given region of space has been largely debated for decades 
[42–49]. Many tunneling time definitions have been so far sug-
gested, the dwell time τd and Wigner delay or group delay time τg , 
as two definitions of tunneling time, are considered well estab-
lished [47]. The group delay time can be calculated by the method 
of stationary phase and defined by the energy derivative of the 
transmission phase shift [50,51], and the dwell time is defined as 
the difference between the time spent by a particle in the bar-
rier region 0 < x < L and the time spent in the same region in 
the absence of the barrier [43,52]. Interestingly, due to the evanes-
cent mode the group delay time for a quantum tunneling particle 
saturate with increasing barrier length for an opaque barrier, it 
leads to the Hartman effect which exhibits superluminal and un-
limited velocities [44,49,51]. Recently, some papers focus on the 
tunneling time in various systems [27,53–68]. Yang and Guo in-
vestigated dwell time in semiconductor superlattices. They define 
a semiclassical delay to illustrate the behavior of the dwell time 
in superlattices [60]. Zhu et al. showed that in silicene unlike the 
graphene barrier, superluminal tunneling is observable at the nor-
mal incidence [63]. Zhai and Lu found that the difference between 
the group delay and dwell time comes from both the interference 
delay and the decaying modes [64]. The effect of magnetic field on 
the group delay time in graphene barriers has been studied by Ban 
et al. It is found that the dwell time to be equal to net group delay 
plus the group delay contributing from the lateral Goos-Hänchen 
shifts [66].

In this paper, we focus on the spin-dependent tunneling time, 
dwell and group delay time, through an asymmetric barrier in 
monolayer graphene with Rashba spin–orbit interaction in the 
presence of strain, which to the best of our knowledge was not 
already been reported. The asymmetry barrier can be obtained dy-
namically by applying an external electric field to the barrier [54,
69–72]. In asymmetric barrier with built-in external electric field, 
RSOI provides coupling between spin and the electron’s spatial 
motion in the plane perpendicular to the direction of the structure 
growth [72]. We show that when the armchair direction strain is 
applied to a monolayer graphene barrier unlike the zigzag direc-
tion the group delay time even at the normal incidence depends 
on the spin state of electrons and superluminal tunneling is ob-
servable due to the evanescent mode. Also, our results show that 
in a graphene based asymmetrical barrier the polarization reaches 
almost 100% efficiency with down and up spin. The paper is orga-

Fig. 1. (a) Schematic of the setup of a normal graphene/strained graphehe/normal 
graphene junction with Rashba spin–orbit interaction and barrier potential in the 
strain region. (b) Graphene barrier with Rashba spin–orbit interaction and strain 
under an applied external electric field (E ′).

nized as follows. In Section 2 we introduce our model and describe 
the theoretical formalism. In Section 3 the results of the numerical 
calculations are presented. Section 4 is the conclusion of the paper.

2. Model and theory

In the present study we consider an asymmetric monolayer 
graphene barrier, which can be realized by applying an external 
electric field to the rectangular graphene barrier. The barrier region 
with the RSOI strength λR = const and uniaxial strain is separated 
by normal graphene (NG) in which there is no RSOI interaction. 
The schematic of the structures is shown in Fig. 1. The effect of 
strain on the Hamiltonian is given by the two-dimensional reduc-
tions of the strain tensor can be written as [73]:

ε = ε

(
cos2 α − μ sin2 α (1 + μ) cosα sinα

(1 + μ) cosα sinα sin2 α − μ cos2 α

)
, (1)

where, α denotes the directions of applied strain with respect to 
the x axis. α = 0 and α = π/2 refer to strain along the zigzag 
and armchair directions, respectively. Poisson’s ratio μ for the 
graphene is 0.14 [74]. ε is strain modulus inside the barrier and 
its value is zero otherwise. Potential profile of the systems along x
axis in the presence of an external electric field (E ′), applied be-
tween x = 0 and x = L, is given by:

V (x) =
{

U0 − eE ′x, for barrier,

−eE ′x, elsewhere,
(2)

here U0 and E ′ are the barrier height and external electric field, 
respectively. Because the strain effects result in both deformation 
of the Dirac cones and displacement of the Dirac points in recipro-
cal space, the strained Hamiltonian with RSOI interaction (K point) 
can be written as [75–78]

Ĥ = Ĥ0 + Ĥ R S O + V (x) Î, (3)

in which,

Ĥ0 = h̄v F U †(α)
[
σx(1 − λxε)qx + σy(1 − λyε)qy

]
U (α),

Ĥ R S O = λR(τxσy − τyσx), (4)

where, σ̂ = (σx, σy) and τ̂ = (τx, τy, τz) are the real spin Pauli ma-
trices and sublattice pseudospin respectively, v F ≈ 106 m/s is the 
Fermi velocity in graphene, λx = 2.2, λy = −0.31 [75], and Î is the 
4 × 4 unit matrix. qx and qy are the components of the quasi-
particle wave vectors along the x and y direction, respectively. 
U (α) = diag(1, e−iα) is the unitary matrix representing a rotation 
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