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The quantum Q 2 class of phenomenological universalities (PU) is extended to include exact solutions 
and minimum uncertainty coherent states of Hulthen, Kratzer–Fues, Tipping and generalized Kratzer–
Fues–Tipping oscillators. In the dissociation (quasi-quantum) limit the solutions obtained generate the 
extended U 2 class of PU including West–Brown–Enquist universal growth curve and temporal (spatial) 
fractal functions widely used in the field of life sciences and physics. It will be shown that the PU 
concept seems to be a valuable methodology for deriving the new forms of potential energy functions 
with possible applications in theoretical analysis of molecular spectra.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Recently [1] the concept of PU introduced by Castorina, Del-
santo, and Guiot (CDG) [2,3] has been extended to include quan-
tum oscillatory phenomena, coherence and supersymmetry. In par-
ticular it was proved that the CDG formalism is a hidden form of 
supersymmetry, which can be employed not only to classify the 
growth phenomena emerging in the complex systems but also to 
obtain exact solutions of the quantal time-like Schrödinger and 
space-like Horodecki–Feinberg [9,8] equations for harmonic and 
anharmonic oscillators. They can be employed to construct quan-
tum coherent states of the time- and space-dependent harmonic, 
Morse [4] and Wei [5] oscillators belonging to the Q 0, Q 1 and Q 2
classes of PU. In the dissociation (classical) limit coherent states 
reduce to the well-know Gompertz [6] and West–Brown–Enquist 
(WBE)-type (e.g. logistic, exponential, Richards, von Bertalanffy) [7]
time-dependent functions of growth or space-dependent distribu-
tion functions characterized as U 1 and U 2 classes of PU. In this 
work we justify the thesis that the Q 2 class covers a wide spec-
trum of exact solutions of time (space)-dependent quantum wave 
equations including Hulthen [11,12], Kratzer–Fues [19,20], Tipping 
[21] and a combination of Kratzer–Fues–Tipping potentials. It will 
be proved that the multiparametric generalization of the latter can 
be successfully applied in theoretical analysis of molecular spec-
tra.

E-mail address: mamolski@amu.edu.pl.

2. Theory

In the extended CDG theory [1], the quantum Q 0, Q 1 and Q 2
classes of PU can be obtained from the set of nonlinear equa-
tions [2]

dψ(q)

dq
− x(q)ψ(q) = 0,

dx(q)

dq
+ �(x) = 0 (1)

in which q = utt or q = urr denote dimensionless temporal (spa-
tial) variable, ut(r) is a scaling factor, whereas �(x) stands for a 
generating function, which expanded into a series of x-variable [1]

�(x) = c1(x + c0/c1) + c2(x + c0/c1)
2 + ... (2)

produces classical [2] and quantum [1] solutions

ψ(q) = exp

⎡
⎣−

∫
x

xdx

�(x)
+ C

⎤
⎦= exp

⎡
⎣∫

q

x(q)dq + C

⎤
⎦ (3)

for different powers n = 0, 1, 2 of the truncated series (2). The 
first-order CDG equations (1) can be converted to the second-order 
onc [1]

d2ψ(q)

dq2
− ψ(q)

dx(q)

dq
− x(q)

dψ(q)

dq
=

[
−1

2

d2

dq2
+ V (q) − ε

]
ψ(q) =

(
Ĥ − ε

)
ψ(q) = 0,

V (q) − ε = 1

2

[
x(q)2 + dx(q)

dq

]
, (4)
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which includes the Riccati equation [22] associated with the 
potential energy V (q) and eigenvalue ε characterizing the sys-
tem under consideration. In this way one can generate the time 
(space)-dependent classical and quantum equations for differ-
ent forms of generating function (2). For example, the constant 
term �(x) = c0 produces the quantum ground state wavefunc-
tion and associated eigenvalue for the harmonic oscillator, the 
linear expansion �(x) = c0 + c1x gives exact solutions for the 
anharmonic Morse oscillator [4], whereas parabolic expansion 
�(x) = c1(x + c0/c1) + c2(x + c0/c1)

2 yields solutions for the Wei 
oscillator [5], respectively [1]. In the dissociation limit, which cor-
responds to c0 = 0, the quantum solutions reduce to the classical 
Gompertz [6] and West–Brown–Enquist (WBE)-type [7] functions 
belonging to U 1 and U 2 classes of PU.

The Hamilton operator appearing in Eq. (4) can be expressed in 
the terms of the first-order annihilation and creation operators Â
and Â†

Ĥ = 1√
2

[
− d

dq
− x(q)

]
1√
2

[
d

dq
− x(q)

]
= Â† Â, (5)

hence, the CDG approach can be used to construct coherent states 
of harmonic and anharmonic oscillators which are eigenstates of 
the annihilation operator Â [23,24]

Â|α〉 = α|α〉,
|α〉 = ψ(q)exp[√2αq], [ Â, Â†] = �(x) (6)

and which minimize the generalized uncertainty relation (h̄ = 1) 
[23,25]

[�x(q)]2 (�ε)2 ≥ 1

4
〈α|�(x)|α〉2, �(x) = ∓i

[
x(q), ε̂

]
. (7)

Here ε̂ = ±id/dq represents the energy (+) or momentum (−) op-
erator whereas x(q) plays the role of temporal (spatial) variable 
associated with an explicit form of the potential energy func-
tion V (q). To obtain the minimum uncertainty coherent states we 
need only the ground state solution ψ(q) and quantity x(q) defin-
ing the annihilation operator Â .

3. Results

All quantities x(q), V (q), ε and ψ(q) uniquely characterize the 
quantum systems and can be determined in the CDG scheme 
for different forms of the generating function �(x). It has been 
demonstrated [1] that only the form (2) produces quantal equa-
tions, whereas the conventional version �(x) = c0 + c1x + c2x2 ap-
plied by CDG leads to the classical solutions for the dumped oscil-
lations first time derived in [27]. A detailed mathematical analysis 
of the impact of �(x) on the form of quantum solutions generated 
in the CDG scheme revealed that they depend not only on differ-
ent powers n = 0, 1, 2 of the truncated series (2) but also on the 
relations between parameters c1, c2 and the presence or absence 
the terms (x + c0/c1)

l for l < n in the series. Such modifications 
open the gate to obtain variety of new quantal solutions which are 
known or unknown in the domain of quantum physics.

3.1. Hulthen oscillator

Introducing the generating function (2) for c1 = c2 = 1

�(x) = x + c0 + (x + c0)
2 (8)

into the CDG equations (1), by integration one gets

x(q) = exp(−q)

1 − exp(−q)
− c0, ψ(q) = [1 − exp(−q)]exp(−c0q),

(9)

whereas the second-order eigenvalue equation (5) takes the form[
d2

dq2
+ (1 − 2c0)exp(−q)

1 − exp(−q)
− c2

0

]
ψ(q) = 0 (10)

identical as that obtained for the Hulthen oscillator [10–12]. The 
Hulthen model has been used in many branches of physics, such 
as nuclear [13], atomic [14,15], solid state [16] and chemical 
physics [17].

If we take into account the parameters relationships c2
0 = −ε1

and 1 − 2c0 = β2 one gets ε1 = −[(β2 − 1)/2]2, which represents 
the ground state eigenvalue included in the general formula [10]

εv = −
(

β2 − v2

2v

)2

v = 1,2,3... (11)

associated with eigenfunctions (in arbitrary normalization) [10]

ψ(q)v = [1 − exp(−q)]exp(−c0q)2 F1[2c0 + 1 + v,1 − v,

2c0 + 1;exp(−q)]. (12)

For v = 1, ψ(q) specified by (9) takes identical form as the ground 
state solution ψ(q)1 obtained from (12).

Having derived the ground state eigenfunction ψ(q)1 and x(q)

appearing in the operator Â defining by Eq. (5) one may construct 
the time- and space-dependent coherent states of the Hulthen os-
cillator employing the formula (6)

|α〉 = [1 − exp(−q)]exp(−c0q)exp[√2αq]. (13)

They are eigenstates of the annihilation operator

1√
2

[
d

dq
− exp(−q)

1 − exp(−q)
+ c0

]
|α〉 = 0, (14)

and minimize the generalized uncertainty relation (7)

[�x(q)]2 (�ε)2 = 1

4
〈α|�(x)|α〉2, �(x) = x + c0 + (x + c0)

2,

(15)

with variable x(q) defined by (9). The minimum uncertainty coher-
ent states (13) for the Hulthen oscillator have not been constructed 
yet and only ladder (raising and lowering) operators satisfying 
SU (0) commutation relation were derived for this model [18].

3.2. Kratzer–Fues–Tipping oscillator

Lets consider the generating function �(x) including only the 
second-order term with parameter c2 = c1

�(x) = c1(x + c0/c1)
2. (16)

Introducing (16) into (1) and carried out calculations with respect 
to the boundary condition x(0) = (1 − c0)/c1 one gets

x(q) = 1

c1(1 + q)
− c0

c1
, ψ(q) = (1 + q)1/c1 exp

(
− c0

c1
q

)
(17)

and the second-order eigenvalue equation (5){
−1

2

d2

dq2
+ D

[
(1 + q) − k

1 + q

]2

− ε

}
ψ(q) = 0 (18)

in which

D = c2
0

c2
1(1 − c1)

, ε = D − c2
0

c2
1

, k = 1 − c1

c0
. (19)
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