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We investigate the effect of valley-dependent orbital magnetic moment on the transmission of 
quasiparticles through biased bilayer graphene npn and pnp junctions in the presence of out-of-plane 
magnetic field. It is shown that the valley-polarized Zeeman-like energy splitting, due to the interaction 
of orbital magnetic moment with magnetic field, can suppress the transmission of quasiparticles of one 
valley while transmitting those of the other valley. This valley-selective transmission property can be 
exploited for valley filtering. We demonstrate that the npn and pnp junction, respectively, filters off the 
K ′-valley and K -valley particles, with nearly perfect degree of filtration.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Valley pseudospin, an extra intrinsic degree of freedom in 2D 
materials such as graphene and transition metal dichalcogenides, 
has drawn much attention in recent years because of its potential 
application as information storage, known as valleytronics. To uti-
lize the valley degree of freedom it is essential to produce valley-
polarized particles by breaking inversion and/or time-reversal sym-
metries. Various theoretical proposals for valley filtering have been 
made in monolayer (MLG) and bilayer (BLG) graphenes, which in-
clude the effects of quantum point contact [1,2], trigonal warping 
[3–5], strain due to mechanical deformation [6–12], line defects 
[13–15], electromagnetic waves [16,17], combination of MLG and 
BLG [18], or substrate-induced mass [19–21]. One of the primary 
issues in this subject is to find an effective and controllable way of 
valley filtering.

In this paper, we propose a different mechanism that can facil-
itate the valley filtering with high efficiency. Our model is based 
on Zeeman-like interaction between orbital magnetic moment of 
quasiparticles in BLG and external magnetic field. As the valley 
pseudospin represents degenerate states of the two different sym-
metry points K and K ′ in momentum space it is intimately re-
lated to the Berry phase [22]. In association with the Berry phase 
there are also two physically observable quantities, Berry curva-
ture and orbital magnetic moment [23,24]. The Berry curvature 
can exist when a crystal has broken inversion symmetry (and/or 
broken time-reversal symmetry) [25,26] and the orbital magnetic 
moment stems from the self rotation of wavepacket in semiclas-
sical description of quasiparticles in a band. A unique feature of 
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these quantities in graphene is that both of them depend on the 
valley degree of freedom, carrying valley-dependent electronic and 
transport properties [23,27–32].

In the presence of an external magnetic field the orbital mag-
netic moment interacts with the field to induce Zeeman-like en-
ergy shift in a band. The energy shift has opposite signs at dif-
ferent valleys due to the valley dependence of orbital magnetic 
moment, called a valley Zeeman effect [23]. Exploiting this valley-
contrasting energy shift we investigate its effect on the transmis-
sion of quasiparticles through biased BLG npn (barrier) and pnp
(well) junctions with out-of-layer magnetic field applied in the 
barrier/well regions. When quasiparticles pass through a junction 
they will experience the energy shift due to the valley Zeeman ef-
fect. Because of the opposite polarity of the K and K ′ valleys, the 
energy of one valley may enter band gap, while that of the other 
valley stays within band. Below, we demonstrate that the trans-
mission of quasiparticles with energies inside a band gap can be 
greatly suppressed, whereas those within a band will pass through 
the junctions with large probabilities. As a result, the junctions can 
filter off quasiparticles of one valley while transmitting those of 
the other valley, exhibiting valley filtration.

2. Valley-dependent Zeeman effect

In this section we discuss about the valley Zeeman effect in 
bilayer graphene with band gap. Let us consider a bilayer graphene 
(BLG) biased by external gate voltages. The low-energy effective 
two-band Hamiltonian of the BLG can be expressed as [33–35]

Ĥ0 = − p2
x − p2

y

2m∗ σ̂x − τ
{px, p y}

2m∗ σ̂y + uσ̂z , (1)
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where {px, p y} denotes anticommutation (px,y = −ih̄∂x,y), σ̂i (i =
x, y, z) are Pauli matrices, m∗ = γ1/2v2

F is an effective mass (γ1 ≈
0.4 eV, v F ≈ 106 m/s), τ is the valley index with τ = +1 for the K
valley and τ = −1 for the K ′ valley, and u is a half of gap (u = �/2
with � being the gap) due to the bias. Transforming the Hamilto-
nian, Ĥ0(k) = e−ik·rĤ0eik·r , for an adiabatic process in the k-space 
[23], we can construct an eigenvalue equation

Ĥ0(k)|χsτ (k)〉 = εs(k)|χsτ (k)〉 , (2)

where εs = sε with s = ±1 bing the band index. The energy and 
pseudospinor are given by

|χsτ 〉 = 1√
2ε

( √
ε + su

−se2iτφ
√

ε − su

)
, ε =

√
ε2

k + u2 , (3)

where φ = arctan(ky/kx) and εk = h̄2k2/2m∗ with k2 = k2
x + k2

y . 
Owing to the diagonal term uσ̂z in the Hamiltonian (1) space-
inversion symmetry is broken in biased BLG. It is thus possible 
to have non-zero Berry curvature. Using Eq. (3) the Berry curva-
ture, which is a gauge invariant quantity, for the biased BLG can 
be obtained as follows:

�sτ = i〈∇kχsτ | × |∇kχsτ 〉
= −sτ

h̄2

m∗
u
√

ε2 − u2

ε3
êz . (4)

The dynamics of quasiparticles in a band s can also be de-
scribed by semiclassical equation of motion of a wavepacket [36]. 
In this case, due to the finite spread of wavepacket, the self rota-
tion of wavepacket about its center can produce an orbital mag-
netic moment [23]. For BLG, using the particle–hole symmetry [27,
37], the orbital magnetic moment can be obtained from the Berry 
curvature via following relation:

Mτ = sε
e

h̄
�sτ = −τμ∗

B f (ε, u)êz , (5)

where μ∗
B is an effective Bohr magneton defined as μ∗

B =
eh̄/2m∗ ≈ 1.7 (meV/T) and we have introduced an energy func-
tion

f (ε, u) = 2u

ε2

√
ε2 − u2 (|ε| > u) . (6)

As we can see here the direction of orbital magnetic moment de-
pends on the valley and the directions of the K and K ′ valleys are 
opposite to each other.

In the presence of magnetic field B = Bêz the orbital magnetic 
moment yields energy shift in the band energy:

εs → εs + U Mτ , (7)

where U Mτ is a Zeeman-like (or, valley Zeeman) energy [23,37]
defined as

U Mτ = −Mτ · B = τ U M , U M = μ∗
B B f (ε, u). (8)

Evidently, the energy shift is either positive or negative, depending 
on the valley. As we shall show below this valley-dependent Zee-
man effect plays an important role in the transmission through a 
BLG junction, leading to valley filtering.

We remark here two points. First, the effective Bohr magneton 
is much larger than that of real spin: with given values of γ1 and 
v F the effective mass is m∗ ≈ 0.032me , and hence μ∗

B ≈ 31μB . It is 
thus safe to neglect the effect of real spin in the range of magnetic 
field of interest (B � 4 T, see below) [38]. Second, from Eq. (6), 
the energy function f (ε, u) has maximum value fmax = 1 when 
ε = s

√
2 u. Thus, there exists a maximum value of valley Zeeman 

energy:

Umax
M = μ∗

B B when ε = s
√

2 u (9)

In what follows, we will use this energy to maximize the valley 
Zeeman effect on the transmission through a junction.

3. Valley filtration

To investigate the effect of orbital magnetic moment on the 
transmission we consider both npn (barrier) and pnp (well) junc-
tions with magnetic filed in the central regions (see Fig. 1). In the 
present work we assume that the width of sample (the y direc-
tion) is large enough so that the edge effects due to boundary 
conditions can be neglected [39,40]. We choose Landau gauge

A(x) =
[

Bx
(d2/4 − x2) ± Bd

2

(±x − d/2)

]
êy , (10)

where 
(x) is the Heaviside step function and the double signs are 
in the same order. This choice produces B = ∇ × A = B
(d2/4 −
x2) ̂ez (perpendicular to the layer) and preserves the translational 
invariance along the y direction. The Hamiltonian, including the 
valley Zeeman energy, is then expressed as

Ĥ = Ĥ0(B) + V (x) + U Mτ (11)

where Ĥ0(B) is given in Eq. (1) with the substitution

p y → πy(x) = p y + e A(x) (12)

and the potential is expressed as V (x) = sV 0
(d2/4 − x2) with 
s = + for barrier (npn) and s = − for well (pnp) and d being the 
width of potential barrier/well.

The valley filtration can be viewed by writing the wave equa-
tion as follows:

Ĥ0(B)|ψ(r)〉 = [ετ − V (x)] |ψ(r)〉 , (13)

where r = (x, y) and ετ is an effective energy incorporating the 
valley Zeeman term:

ετ = ε − τ U M . (14)

Let us consider the npn junction, the potential barrier [see 
Fig. 1(a)]. Outside the barrier (regions I and III), since V (x) = 0
and B = 0, the energy is an incident energy ε . Inside the barrier 
(region II), however, it becomes effective energy ετ due to the val-
ley Zeeman term. Now, when the incident energy ε coincides with 
band edge such that ε = V 0 − u, the valley-dependent effective en-
ergies become εK = V 0 −u −U M and εK ′ = V 0 −u +U M , so that εK

lies within the band (the negative energy states) whereas εK ′ en-
ters the band gap where no allowed states exist: the K -valley par-
ticles are in the Klein tunneling regime and the K ′-valley particles 
undergo ordinary tunneling [41]. As a consequence, the transmis-
sion of K ′-valley particles will be suppressed, resulting in filtration 
of the K ′-valley particles. The situation is reversed in the pnp junc-
tion, the potential well. In this case, we have εK = −V 0 + u − U M

and εK ′ = −V 0 + u + U M , so that the K -valley energy enters the 
band gap and the K ′-valley remains within the band (the positive 
energy states) [see Fig. 1(b)]. Thus, the pnp junction filters off the 
K -valley particles, while transmitting the K ′-valley particles.

To see the valley filtration explicitly, we solve the wave equa-
tion (13) numerically by using the method of transfer matrix (see 
Appendix A for details). As mentioned in Sec. 2 we specialize the 
case ε = s

√
2 u to maximize the valley Zeeman effect. For the band 

edge transmission, using the relation ε = s(V 0 −u) = s
√

2 u, the in-
cident energy and band gap can be parameterized with potential 
height/depth V 0: ε = s(2 − √

2 )1/2 V 0 and u = (
√

2 − 1)1/2 V 0.
Due to cyclotron motion particles inside the barrier/well will 

follow curved paths. This restricts the allowed range of magnetic 
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