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By employing the separated spin evolution quantum hydrodynamic model, non-linear evolution of 
obliquely propagating spin electron acoustic wave (SEAW) is presented. The solitary structures of SEAW is 
investigated through the Korteweg–de Vries (KdV) equation derived using reductive perturbation method. 
From the first order perturbations we derive the dispersion relation of SEAW and find that both the spin 
polarization and the propagation angle reduce the phase velocity while the electron streaming enhances 
it. Using small amplitude approximation, the solitary structure of SEAW is analyzed and the effects of spin 
polarization, propagation angle and electron streaming on the SEA soliton are studied. Our numerical 
results demonstrate that the spin polarization and the propagation angle play a balancing act on the 
soliton structures. The possible applications of our investigation to the astrophysical environments like 
white dwarfs is also discussed.

© 2017 Published by Elsevier B.V.

1. Introduction

The acoustic waves like the electron acoustic and the ion acous-
tic waves are the fundamental modes of plasma. Linear and non 
linear properties of both the electron acoustic and the ion acous-
tic waves have been extensively studied in classical electron–ion 
plasma [1–8]. Washimi and Taniuti [9] showed that such waves, in 
a weakly nonlinear regime, can be mathematically modeled by the 
well known Korteweg–de Vries (KdV) equations. The study of these 
waves also gained its importance in quantum plasmas in order to 
understand the electrostatic wave propagation at the microscopic 
level. In this regard, the quantum hydrodynamic (QHD) model has 
been used to investigate the quantum effects on the linear and 
nonlinear properties of the ion acoustic wave in an unmagnetized 
and magnetized electron–ion plasma [10–12] and was found that 
the quantum effects significantly modify the linear and non lin-
ear properties of this wave. Linear and non linear propagation of 
ion acoustic wave has also been studied for electron–positron–ion 
(e–i–p) plasma in the Refs. [13–17].

Recently, another electron spin dependent acoustic type of 
mode called spin electron acoustic wave (SEAW) has been re-
ported in Ref. [26] by considering the separate spin evolution 
(SSE) of spin-up and spin-down electrons in a degenerate mag-
netized plasma. It is demonstrated that in the presence of ambi-
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ent magnetic field, the equilibrium concentration of spin-up and 
spin-down electrons are different (nu �= nd) which in turn is re-
sponsible for the difference of Fermi pressures of the spin-up and 
spin-down electrons. This difference of Fermi pressures gives birth 
to SEAW. Separate spin evolution-quantum hydrodynamic model 
(SSE-QHD) is an extension of QHD model which was presented in 
[18–20]. The spin-1/2 quantum plasmas in which the spin prop-
erties of electrons are taken into account, have received great at-
tention due to the occurrence of new wave phenomena. [21–28]
Subsequently, the quantum kinetics for spin-1/2 quantum plasmas 
has been developed and applied to study the dispersion prop-
erties of various plasma waves. [23,29–34] A pair of SEAW and 
positron acoustic wave was found by considering oblique propaga-
tion of longitudinal waves with SSE-QHD equations in electron–ion 
(e–i) and electron–positron–ion (e–p–i) plasmas [27,28]. This novel 
type of spin dependent wave has also been found by applying the 
SSE-QHD equations to the two dimensional electron gas in plane 
samples and nanotubes embedded in an external magnetic field 
in Refs. [35]. SEAWs have been studied on the surface degenerate 
spin polarized electron gas of magnetically ordered materials and 
their linear interaction with the surface Langmuir wave has been 
investigated [37]. SEAW also explains the mechanism of high tem-
perature superconductivity. It has been reported that the quanta 
of SEAW (spelnon) interact with electrons which gives a mecha-
nism of the Cooper pairs formation [38] which in turn explains the 
high temperature superconductivity [38]. Existence of the extraor-
dinary spin electron acoustic wave (SEAW) demonstrated has been 
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demonstrated in Ref. [39]. It is found that shifting in the spectrum 
of extraordinary SEAW is due to the variation in ratio of cyclotron 
frequency to Langmuir frequency.

The above mentioned applications show that electron acous-
tic and ion acoustic waves are well studied in both the classical 
and quantum plasmas but in the present work we focus on the 
new spin dependent acoustic mode. From above cited literature 
about SEAW one may notice that most of the properties and ap-
plications of SEAW have been studied in the linear regime. Only 
a little attention has been paid in Refs. [40,41] to study the non 
linear properties of SEAW but these authors considered only par-
allel propagation of non linear SEAW. To the best of our knowl-
edge, no one has investigated the obliquely propagating non linear 
structures of SEAW. The above mentioned interesting features of 
SSE-QHD model motivate us to generalize our calculations in mag-
netized degenerate plasma for oblique propagation of electrostatic 
waves including streaming effects and study the soliton evolution 
of SEAW.

2. Governing equations

We study the obliquely propagating electrostatic waves in col-
lisionless electron ion plasma embedded in an external magnetic 
field B0 that is directed along the z direction and the wave prop-
agates in the (x, z) plane. The ions are considered immobile and 
satisfy the neutrality condition. In order to govern the dynamics 
of electrons, we consider the SSE-QHD equations which were re-
cently developed in [26,27]. In the SSE-QHD equations, under the 
action of external magnetic field each species with spin-up and 
spin-down is considered as independent fluid. Therefore, the con-
tinuity equation with spin projection of each species is presented 
as

∂tnes + ∇(nesves) = (−1)is T z, (1)

where s = u, d for the spin-up and spin-down conditions of parti-
cles, nes and ves are the concentration and velocity field of elec-
trons being in the spin state s, Tez = γe

h̄ (Bx Sey − B y Sex) is the 
z-projection of spin torque, 

∣∣γe
∣∣ = μB , μB is the Bohr magneton, 

is: iu = 2, id = 1, with the spin density projections Sex and Sey , 
each of them simultaneously describe evolution of the spin-up and 
spin-down particles of each species. Therefore, the functions Sex
and Sey do not bear subindexes u and d. In this model the z-
projection of the spin density Sez is not an independent variable, it 
is a combination of concentrations Sez = neu −ned . The momentum 
equation for electrons is given as [26]

menes(∂t + ves.∇)ves + ∇ Pes

= −enes

(
E + 1

c
[ves,B]

)
+ (−1)isγenes∇Bz

+ γe

2
(Sex∇Bx + Sey∇B y) + (−1)is m(̃Tez − ves Tez), (2)

with Pes = (6π2)
2
3 n

5
3
esh̄2/5m, T̃ez = γa

h̄ (J(M)ex B y − J(M)ey Bx), which 
is the torque current, where J(M)ex = (veu + ved)Sex/2, and J(M)ey =
(veu + ved)Sey/2 are the convective parts of the spin current ten-
sor. E = E0 + E1 and B = B0 + B1, here E0 and B0 are equilibrium 
electric and magnetic fields and E1 and B1 are perturbed electric 
and magnetic fields. In this paper we consider oblique propagation 
of longitudinal waves such that wave vector k is parallel to elec-
tric field vector E. Therefore the perturbation of magnetic field is 
zero (B1 = 0). So the above Eqs. (1) and (2) can be written in a 
simplified form as

∂tnes + ∇.(nesves) = 0 (3)

menes(∂t + ves.∇)ves + ∇ Pes = −enes

(
E + 1

c
[ves,B]

)
, (4)

and the Poisson equation can be written as

∇.E = −4πe(neu + ned). (5)

To investigate the nonlinear dynamics of the spin-1/2 quantum 
degenerate magnetized plasma with SSE, we employ the reduc-
tive perturbation method [9]. We study the oblique propagation of 
non linear longitudinal waves in x − z plane. For oblique prop-
agation of waves unit vector k in (x, z) plane requires k̂.

−→r =
x sin θ + z cos θ . Therefore, the space coordinate x or z generally 
used in the case of one dimensional propagation should be re-
placed with x sin θ + z cos θ . We suppose the scaling of independent 
variables through the following stretched coordinates

ξ = ε
1
2 (x sin θ + z cos θ − ut) , τ = ε

3
2 t (6)

where ε is a small parameter measuring the strength of perturba-
tion or weakness of nonlinearity, u is phase velocity of waves. The 
perturbed quantities ns, vs , and φ are expanded about their equi-
librium positions in the form of small parameter ε as follows:

ns = n0s + εn1s + ε2n1s + .... (7)

vsx = ε3/2 vsx1 + ε2 vsx2 + .... (8)

vsy = ε3/2 vsy1 + ε2 vsy2 + .... (9)

vsz = v0 + εvsz1 + ε2 vsz2 + .... (10)

φ = εφ1 + ε3φ2 + .... (11)

Here s is for spin up and spin down electrons and v0 is the 
streaming velocity of electrons which is same for spin up and spin 
down electron. Since in the presence of external magnetic field, 
action of the Lorentz force in the perpendicular direction of mag-
netic field is different from that in the parallel direction. Therefore, 
in Eq. (8)–(11) we introduce anisotropy in the expansion of veloc-
ity fields in the direction transverse and parallel to the external 
magnetic field. By using E = −∇φ in the governing Eqs (3), (4)
and (5) and substituting the Eqs. (7)–(11) into these equations and 
collecting terms of lowest order in ε from the continuity equations 
and equations of motion, we obtain the perturbed number densi-
ties and velocities of electrons in term of electric potential φ1, for 
electrons

n1es =
∑

s=u,d

n0es cos θ

u − v0
vz1 (12)

vz1 =
∑

s=u,d

(−u + v0)
e
m cos θ(

(−u + v0)
2 − V 2

F es cos2 θ
)φ1 (13)

where V 2
F u = 1/3v2

F e(1 − η)
2
3 and V 2

F d 1/3v2
F e(1 + η)

2
3 , η =

3μB B0/2εFe where εFe is the Fermi energy and

v F e = (3π2n0e)
1/3h̄/me

is the Fermi velocity of electrons. Using Eqs. (14)–(16) in the Pois-
son equation in the first order of ε which is given as neu1 + neu1 =
0, we obtain dispersion relation of phase velocity of SEAW as

(1 − η)((
w − √

3 v0
v F e

)2 − (1 − η)
2
3 cos2 θ

)
+ (1 + η)((

w − √
3 v0

v F e

)2 − (1 + η)
2
3 cos2 θ

) = 0. (14)

In Eq. (14), we have defined the wave phase velocity u in term 
of electron Fermi velocity as u2 = w2 v2

F e/3 so that w represents 
the dimensionless phase velocity. Eq. (14) shows that the phase 



Download English Version:

https://daneshyari.com/en/article/8204313

Download Persian Version:

https://daneshyari.com/article/8204313

Daneshyari.com

https://daneshyari.com/en/article/8204313
https://daneshyari.com/article/8204313
https://daneshyari.com

