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The static second hyperpolarizability is derived from the space-fractional Schrödinger equation in the 
particle-centric view. The Thomas–Reiche–Kuhn sum rule matrix elements and the three-level ansatz 
determines the maximum second hyperpolarizability for a space-fractional quantum system. The total 
oscillator strength is shown to decrease as the space-fractional parameter α decreases, which reduces 
the optical response of a quantum system in the presence of an external field. This damped response 
is caused by the wavefunction dependent position and momentum commutation relation. Although 
the maximum response is damped, we show that the one-dimensional quantum harmonic oscillator 
is no longer a linear system for α �= 1, where the second hyperpolarizability becomes negative before 
ultimately damping to zero at the lower fractional limit of α → 1/2.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Kuzyk first discovered limits to the nonlinear optical responses 
of non-relativistic systems with position dependent potentials [1]. 
These limits are much greater than the largest responses obtained 
through experimentation [2]. Another gap has also been observed 
between the fundamental limits and the best optimized pseudo-
potentials [3–5]. These reported gaps may be better understood by 
investigating more generalized quantum mechanical theories. The 
relativistically corrected Thomas–Reiche–Kuhn (TRK) sum rule [7,8]
led to smaller intrinsic nonlinearities as compared to those cal-
culated in the purely non-relativistic regime, where this decrease 
in the response is caused by higher-order momentum operators 
appearing from block diagonalization of the Dirac equation [9]. 
The first hyperpolarizability of systems described by the space-
fractional Schrödinger equation has also been investigated [10].

Laskin discovered the space-fractional Schrödinger equation by 
generalizing the path integral formulation using a Lévy-type path 
[11]. Laskin further investigated the space-fractional Schrödinger 
equation, where he formulated a fractional generalization of the 
Heisenberg uncertainty principal, proved the Hermiticity of the 
fractional Hamiltonian operator, and determined the energy spec-
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trum of space-fractional, hydrogen-like atoms [12,13]. The ki-
netic energy in the space-fractional Schrödinger equation depends 
on fractional momentum operators, which results in a fractional 
derivative. The Riesz fractional derivative [14]

(−∇2
)α

appears in 
the space-fractional Schrödinger equation.

In this paper, we derive a sum-over-states expression for the 
second hyperpolarizability. The limit to the second hyperpolar-
izability from the space-fractional Schrödinger equation depends 
on the fractional parameter α, therefore we define an appar-
ent intrinsic second hyperpolarizability to make comparisons be-
tween the space-fractional Schrödinger equation and the standard 
Schrödinger equation. Although the limit to the second hyperpo-
larizability decreases when α is reduced below unity, we show 
that some potentials with a small nonlinear optical response can 
gain a larger response magnitude. This is explicitly shown for the 
quantum harmonic oscillator, which has a non-zero second hyper-
polarizability determined from the fractional Schrödinger equation 
within the Lévy index 1 < 2α ≤ 2.

2. Theory

The time-independent space-fractional Schrödinger equation 
with a momentum operator given by the Riesz fractional derivative 
for a single particle system is given by

https://doi.org/10.1016/j.physleta.2017.10.029
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Ĥαψ = Eψ, (1)

where Ĥα is the space-fractional Hamiltonian with fractional pa-
rameter 1/2 < α ≤ 1, E is the energy, and ψ is the wavefunction. 
The Hamiltonian considered in this paper has a kinetic energy 
described by the fractional momentum operator and a spatially 
dependent potential. The one-dimensional, space-fractional Hamil-
tonian may be written as

Ĥα = p̂2

2m
+ V

(
x̂
)
, (2)

where m is the rest mass and V
(
x̂
)

is the potential energy.
Respectively, the position and momentum operators are given 

by

x̂ =
(

h̄

mc

)1−α

|x|α sign (x) (3)

and

p̂ = −imc

(
h̄

mc

)α
∂α

∂xα
. (4)

The operator ∂α/∂xα in Eq. (4) is a fractional derivative. There 
are many definitions of the fractional derivative; simulations per-
formed in this paper are based on a numerical approximation to 
the Riesz fractional derivative. Note that the dimensions of linear 
space and momentum are preserved by the constants in Eqs. (3)
and (4), where c is the speed of light in vacuum and h̄ is the re-
duced Planck constant.

We use time-independent perturbation theory of the space-
fractional Schrödinger equation in one dimension to determine the 
scalar, static, second hyperpolarizability in the zero frequency limit 
[15]. The perturbing term in the Hamiltonian caused by the con-
stant electric field E is given by

Ĥpert
α = eE x̂, (5)

where Ĥα = Ĥ (0)
α + Ĥpert

α with Ĥ (0)
α given by Eq. (2). We take a 

particle-centric approach, where the origin is placed at the ex-
pectation value of an electron in a potential well. Note that we 
may remove subscripts for single electron systems, where multi-
electron systems will have different position operators based on 
the relative displacements between their origins at their respective 
expectation values. Only for α → 1 does the position operator and 
perturbation potential become linear.

The fourth-order correction to the energy from time-indepen-
dent perturbation theory [16] is given by

E(4) =
∑
k,�,n

′
(

Ĥpert
α

)
0k

(
H

pert
α

)
k�

(
H

pert
α

)
�n

(
Ĥpert

α

)
n0

Ek0 E�0 En0

−
∑
k,�

′
(

Ĥpert
α

)
0k

(
Ĥpert

α

)
k0

(
Ĥpert

α

)
0�

(
Ĥpert

α

)
�0

E2
k0 E�0

, (6)

where the prime denotes the sum over all states except the ground 
state. Shorthand notation was introduced in Eq. (6), Eij = E(0)

i −
E(0)

j and Oi j = Ôi j − δi jÔ00 with δ representing the Kronecker 
delta function, where Ôi j = 〈

i(0)
∣∣ Ô ∣∣ j(0)

〉
is the transition proba-

bility of the unperturbed system with 
∣∣i(0)

〉
being the unperturbed 

state vector indexed from the ground state i = 0.
The static, third-order, scalar response is given by

κ(3) = 1

(3)!
∂4

∂E4
E0 (E)

∣∣∣∣
E=0

, (7)

where E0 is the ground state energy. Thus, the sum-over-states 
expression for the static, scalar, second hyperpolarizability given in 
terms of the transition energies and fractional transition moments 
is

κ(3) = 4e4
∑
k,�,n

′ x̂0kxk�x�nx̂n0

Ek0 E�0 En0
− 4e4

∑
k,�

′ x̂0kx̂k0 x̂0� x̂�0

E2
k0 E�0

. (8)

Because the theory is strictly particle-centric, the expectation value 
for an electron in its lowest energy state is always zero which al-
lows us to neglect the bar operator in Eq. (8).

The Leibniz rule and chain rule known from integer calculus 
do not take the same form in fractional calculus, and therefore [
x̂, p̂

]
will not, in general, be equal to the constant ih̄ when α �= 1. 

The TRK sum rule [17–19] for the mechanical Hamiltonian found 
in the fractional Schrödinger equation results in a wavefunction-
dependent form. For a single electron, the fractional TRK sum 
rule, calculated from the transition probability of the second com-
mutation relation of the Hamiltonian with the position operator 〈
k(0)

∣∣ [x̂,
[

Ĥ (0)
α , x

]] ∣∣�(0)
〉
, follows as

∞∑
q=0

x̂kq x̂q�

[
E(0)

q − 1

2

(
E(0)

k + E(0)
�

)]
= h̄2

2m
λα (k, �) , (9)

where

λα (k, �) =
∫

ψ
(0)†
k (x)

[
1

2
ξ̂2 (x)

∂2α

∂x2α
+ 1

2

∂2α

∂x2α
ξ̂2 (x)

−ξ̂ (x)
∂2α

∂x2α
ξ̂ (x)

]
ψ

(0)
� (x) dx (10)

with ψ
(0)
i (x) = 〈

x|i(0)
〉

and ξ̂ (x) = |x|α sign (x). The normalized 
wavefunction of the unperturbed system has the usual property,

δk� =
∞∫

−∞
ψ

(0)†
k (x)ψ

(0)
� (x) dx . (11)

Note that the summation over the state q is introduced into 
Eq. (10) through the use of closure.

The (k = 0, � = 0) TRK sum rule element gives,

E10
∣∣(x̂

)
10

∣∣2 = h̄2

2m
λα (0,0) −

∞∑
q=2

Eq0

∣∣∣(x̂
)

q0

∣∣∣2
. (12)

It is clear from Eq. (12) that the largest possible ground state tran-
sition moment allowed by the TRK sum rule happens when all 
of the oscillator strength is in the transition to the first excited 
state. Setting all terms in the sum for q ≥ 2 equal to zero gives the 
maximum value of the ground state to first excited state transition 
moment,

x̂max
10 = h̄√

2mE10

√
λα (0,0), (13)

where transition moments of a bound electron described by the 
space-fractional Schrödinger equation with the Riesz fractional 
derivative and mechanical Hamiltonian are real, and therefore, 
x̂i j = x̂ ji .

The maximum hyperpolarizability derived from the TRK sum 
rule with only three levels has traditionally been regarded as the 
fundamental limit. The three-level ansatz appears to hold when 
the response is near the fundamental limit for a mechanical Hamil-
tonian in the standard Schrödinger equation. For the case of the 
fractional Schrödinger equation, the fractional TRK sum rule gives 
a reduced value which lowers the limit while the transition dipole 
moment and energy eigenvalue dependencies are of the same form 
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