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We present a general method for analyzing macroscopic collective phenomena observed in many-body 
systems. For this purpose, we employ diffusion maps, which are one of the dimensionality-reduction 
techniques, and systematically define a few relevant coarse-grained variables for describing macroscopic 
phenomena. The time evolution of macroscopic behavior is described as a trajectory in the low-
dimensional space constructed by these coarse variables. We apply this method to the analysis of the 
traffic model, called the optimal velocity model, and reveal a bifurcation structure, which features a 
transition to the emergence of a moving cluster as a traffic jam.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Collective phenomena have been investigated in various fields 
such as materials sciences, biological sciences, and social sciences. 
Examples of such phenomena include granular flow [1–4], the 
collective motion of organisms [5–7], traffic flow [8–10,3,4], and 
pedestrian flow and evacuation dynamics [11–13]. These phenom-
ena emerge as the time evolution of the macroscopic aspects 
of many-body systems. Collective phenomena show the general 
properties of dynamical deformation and transformation, and they 
sometimes appear as drastic global changes. Many physicists have 
recently shown increasing interest in the investigation of such phe-
nomena. From a physical viewpoint, these phenomena can gener-
ally be considered as the collective motion of individual elements.

When we focus on the macroscopic aspects of collective phe-
nomena, it is convenient to express the states of these phenom-
ena using a few appropriate macroscopic variables, like thermody-
namic variables and thermodynamic potentials such as free energy. 
Here, we take group formation as an example of collective phe-
nomena. The process of group deformation can be considered to 
be a change in the similarity between patterns at each sequen-
tial time. We require coarse-grained variables to construct a low-
dimensional metric space in which the similarity between patterns 
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is measured. These variables are obtained by using pattern clas-
sification techniques. In particular, in our study, we employ the 
method of diffusion maps [14–17]. By using this method, we ob-
tain a few relevant coarse-grained variables that identify the dif-
ferences among macroscopic patterns, and we use these as macro-
scopic variables. Then, we construct a macroscopic theory for non-
equilibrium collective phenomena. The time development of the 
macroscopic state of the group is represented as a trajectory in the 
low-dimensional space composed of the obtained variables.

In this study, we construct the macroscopic theory by using 
diffusion maps for analyzing the macroscopic property of a non-
equilibrium dissipative system. As an example of the macroscopic 
phenomena of collective particle motion, we focus on the phenom-
ena of cluster formation such as jam formation. We analyze these 
phenomena using the optimal velocity model [18]. The model is 
investigated as a typical non-equilibrium dissipative system with 
asymmetric interaction, which violates the action-reaction princi-
ple. Jam formation is considered the dynamical phase transition 
of a non-equilibrium system [19–22]. One important property of 
the transition is the bistability of jammed flow and free flow. This 
property has been investigated in many studies using the optimal 
velocity model [23–27]; however, this property has not been sat-
isfactorily explained. The microscopic equation of motion of each 
particle and the non-linearity of the interaction make it difficult to 
investigate this property in detail. Thus, we propose a new method 
using diffusion maps for analyzing the macroscopic property of 
jam formation using the optimal velocity model.
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The remainder of this paper is organized as follows. In sec-
tion 2, we introduce the method of diffusion maps. In section 3, 
we provide a brief review of the optimal velocity model. In sec-
tion 4, we apply diffusion maps to the optimal velocity model and 
find the bifurcation structure. Finally, section 5 presents the sum-
mary and discussion.

2. Diffusion maps

Diffusion maps [14–17] are one of the dimensionality-reduction 
techniques originally proposed in the field of data analysis. In this 
study, we use this technique to obtain coarse variables for de-
scribing macroscopic phenomena in systems with many degrees 
of freedom. This technique results in a transformation of variables 
(called a diffusion map) from a large number of microscopic vari-
ables to a few coarse macroscopic variables. In this section, we give 
a brief explanation of diffusion maps.

The procedure for constructing a diffusion map follows. First, 
we consider a data set X = {xi ∈ R

N | i = 1 . . . , M}. In analysis of 
the collective dynamics, each data point xi is an N-dimensional 
vector representing a state of a system with N degrees of freedom. 
For example, in a classical mechanics system, the components of 
xi are the positions and velocities of all particles at time ti . Here, 
we note that it is not necessary to order the indices of states {xi}
temporally, and a data set is allowed to contain time-sequential 
data obtained from different initial conditions. In the method of 
diffusion maps, only the similarities between states are essential.

Next, we define a Markov chain, which describes the transits 
from one state to another. The probability of a transition between 
states xi and x j is defined as

p(xi, x j) := exp(−‖xi−x j‖2

ε2 )

∑M
j′=1 exp(−‖xi−x j′ ‖2

ε2 )

, (1)

where ‖ · ‖ is the Euclidean norm, and the denominator is the nor-
malization constant. Here, ε is a scaling parameter, which should 
be given a sufficiently small value so that a state can transit only 
within its neighborhood by one step. Then, the Markov chain can 
be thought of as a diffusion process for the set of states X .

Moreover, we introduce a distance function between states xi
and x j as

D2
s (xi, x j) :=

M∑
m=1

(ps(xi, xm) − ps(x j, xm))2

φ0(xm)
. (2)

Here, Ds is called the diffusion distance, where ps(xi, xm) is the 
transition probability from xi to xm in s steps, and φ0 is the sta-
tionary distribution function of the Markov chain. Ds(xi, x j) can 
be regarded as the measure of similarity between the distributions 
ps(xi, ·) and ps(x j, ·). The right-hand side of equation (2) can be 
rewritten as follows. We define the Markov transition matrix P
whose (i, j) element is

Pij = p(xi, x j), (3)

and its eigenvalue λα and corresponding right eigenvector ψα sat-
isfy

Pψα = λαψα, (α = 0,1, . . . , M − 1). (4)

Owing to the properties of a Markov transition matrix, the eigen-
values can be ordered as

1 = λ0 ≥ λ1 ≥ λ2 ≥ · · · ≥ λM−1 ≥ 0, (5)

without loss of generality. Using ps(xi, x j) = ((P )s)i j and the spec-
tral decomposition of (P )s , we can transform equation (2) into

D2
s (xi, x j) =

M−1∑
α=1

((λα)sψα(xi) − (λα)sψα(x j))
2, (6)

where ψα(xi) is the i-th component of the right eigenvector ψα .
Then, we define the coordinate transformation ys : RN →R

M−1

as

xi �→ ys(xi) = (
ys,1(xi), . . . , ys,M−1(xi)

)

= (
(λ1)

sψ1(xi), . . . , (λM−1)
sψM−1(xi)

)
. (7)

The coordinate transformation map ys is called a diffusion map. In 
the space that consists of diffusion map coordinates, the diffusion 
distance (i.e., equation (6)) equals the Euclidean distance,

D2
s (xi, x j) =

M−1∑
α=1

(yα,s(xi) − yα,s(x j))
2

= ‖ys(xi) − ys(x j)‖2. (8)

Now, we are ready to perform dimensionality reduction. Using 
the inequality (5), the right-hand side of equation (8) can be ap-
proximated as

‖ys(xi) − ys(x j)‖2 ∼=
n∑

α=1

(ys,α(xi) − ys,α(x j))
2, (9)

for appropriately large values of n and s. The approximate equa-
tion (9) means that the similarity between two states can be 
coarsely characterized using up to n coordinates (y1,s, . . . , yn,s). In 
our study, these n variables are the coarse variables used to de-
scribe collective dynamics. The variables n and s can be assumed 
to be small values based on the properties of macroscopic struc-
tures. In Sec. 4, we explore the case of n = 2, s = 1. We use only 
two variables, λ1ψ1, λ2ψ2, to describe the macroscopic phenomena 
of the optimal velocity model.

We wish to study the variation of macroscopic properties under 
different control parameters and conditions using coarse variables 
in the same reduced space. For this purpose, we use the transfor-
mation of an arbitrary state x̃, which has N components, to the 
space of diffusion map coordinates obtained by the original data 
set X . Note that x̃ is not necessarily included in X . By using the 
Nyström extension [28,29], such a transformation is represented by

ys,α(x̃) =
M∑

j=1

ps(x̃, x j)ψα(x j), (α = 1, . . . , M − 1), (10)

to keep it consistent with equation (7). According to equation (10), 
we take the variables for α = 1, . . . , n. Then, we can analyze the 
dynamics using coarse variables (ys,1, . . . , ys,n).

3. The optimal velocity model

In this section, we briefly review the optimal velocity model 
[18], used as an example of diffusion map analysis. The optimal 
velocity model was originally proposed as a model for traffic flow 
to explain the emergence of traffic jams. The model is formulated 
using an equation of motion for each particle:

d2xi(t)

dt2
= a

(
V(�xi(t)) − dxi(t)

dt

)
,

�xi := xi+1(t) − xi(t), (11)

where xi(t) (i = 1, . . . , N) is the position of the i-th particle in a 
one-dimensional lane at time t . Here, a is a constant representing 
the sensitivity of a particle. V(�xi) is called the optimal velocity 
(OV) function, which is a sigmoidal function and represents the 
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