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Quarantine strategies are frequently used to control or reduce the transmission risks of epidemic diseases 
such as SARS, tuberculosis and cholera. In this paper, we formulate a susceptible-exposed-infected-
quarantined-recovered model on a scale-free network incorporating the births and deaths of individuals. 
Considering that the infectivity is related to the degrees of infectious nodes, we introduce quarantined 
rate as a function of degree into the model, and quantify the basic reproduction number, which is shown 
to be dependent on some parameters, such as quarantined rate, infectivity and network structures. 
A theoretical result further indicates the heterogeneity of networks and higher infectivity will raise 
the disease transmission risk while quarantine measure will contribute to the prevention of epidemic 
spreading. Meanwhile, the contact assumption between susceptibles and infectives may impact the 
disease transmission. Furthermore, we prove that the basic reproduction number serves as a threshold 
value for the global stability of the disease-free and endemic equilibria and the uniform persistence 
of the disease on the network by constructing appropriate Lyapunov functions. Finally, some numerical 
simulations are illustrated to perform and complement our analytical results.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Mathematical models have shown to be an important tool to 
investigate dynamical behavior of epidemic diseases. In the early 
studies, these models were presented on homogeneous networks 
by assuming that transmission from an infectious individual to any 
susceptible individual is equally likely. Obviously, this assumption 
is unrealistic in some sense because physical contacts between in-
dividuals vary with each individual.

Since a new modeling framework on scale-free networks was 
introduced by Barabási and Albert in 1999 [1], many real complex 
networks, such as contact networks, have been shown to exhibit 
scale-free property. In a scale-free network, the probability P (k)

that a node is connected to k other nodes follows a power-law, 
that is P (k) ∼ k−r [1], where r is a characteristic exponent with 
value in the range 2 < r ≤ 3. Consequently, the study of epidemic 
models based on scale-free networks has gradually attracted the 
attention of the researchers in recent decades, and many con-
structive results have been obtained. Pastor-Satorras and Vespig-
nani first pointed out that the epidemic threshold is absent or 
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infinitesimal with a large number of links and nodes by investigat-
ing a susceptible-infected-susceptible (SIS) epidemiological model 
on scale-free networks [2]. Since then, a large body of researches 
observed similar conclusions in various scenarios [3–5]. Many re-
searchers investigated the effect of scale-free network structures 
on epidemic spreading from different aspects including quenched 
networks [6], inclusion of households (clusters) [7], adaptive and 
weighted contact networks [8], and networks with rewiring edges 
[9,10]. In terms of theoretical analysis, the authors of Ref. [11]
established mathematical proof about global stability of the well 
known SIS model built by Pastor-Satorras and Vespignani. Besides 
that, Olinky and Stone showed that connectivity-dependent infec-
tion schemes have the same impact on epidemic propagation as 
network structures [12]. The authors of Ref. [13] further revealed 
that effectively heterogeneous contacts play a significant role in 
epidemic dynamics by introducing an effective contact function. 
Meanwhile, the authors of Ref. [14] investigated the combinational 
effects of the connectivity structure and functional factors such as 
transmissions of edges and infectivities of nodes. Apart from net-
work structure and infection schemes, epidemic transmission with 
delay [15–17] and the effects of various immunization schemes in-
cluding ring and targeted vaccinations [18,19] were studied.
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Quarantine, as an effective measure, has been frequently used 
to control the spreading of a large number of human and animal 
infectious diseases, such as SARS in 2003 [20–22] and the 2009 
swine influenza pandemic [23]. Li et al. proposed an SIQRS epi-
demic model on the scale-free networks [24] and discussed the 
effects of quarantine on the spreading of infectious diseases and 
local asymptotic stability of the disease-free equilibrium. Huang et 
al. also presented an SIQRS epidemic model with demographics 
and vaccination on complex heterogeneous networks and stud-
ied the global asymptotic stability of disease-free equilibrium and 
global attractivity of endemic equilibrium [25]. But the quarantined 
rate in [24] and [25] are both constants. In this paper, we shall in-
vestigate the influence of quarantine depending on degree of nodes 
on disease transmission on scale-free networks through a new 
deterministic model. Deterministic models have been presented 
to describe epidemic spread based on two basic compartmen-
tal frameworks. One is the susceptible-infected-susceptible (SIS) 
framework. In this model, there are only two states, susceptible or 
infected. The susceptible individuals may get infected by contact-
ing with an infected individual, and the infected individuals will 
be cured by treatment and become susceptible again. This kind of 
models are appropriate for diseases conferring no immunity [26], 
such as salmonella and influenza. The other one is the susceptible-
infected-recovered (SIR) framework, in which the infected individ-
uals may become recovered and remain immune to further in-
fection, such as measles [27] and varicella [28]. Alternatively, SIR 
model is called the susceptible-infected-removed model because 
the recovered individuals can be removed from the population. 
The purpose of the current paper is to investigate the dynamics 
of diseases conferring temporary or waning immunity [26] with 
quarantine on scale-free networks. Moreover, many diseases in real 
world have a latent period during which the infected individuals 
can not transmit the disease to susceptible individuals. Therefore, 
it is more realistic to introduce an exposed compartment in the SIR 
model, which leads to an susceptible-exposed-infected-recovered 
(SEIR) model. As a matter of fact, plenty of SEIR models have been 
formulated and applied to different infectious diseases, such as 
tuberculosis [29] and dengue fever [30], and edge-based SEIR dy-
namics [31] are also investigated. In addition, we introduced an 
quarantined compartment in order to investigate the effect of quar-
antine strategy on scale-free networks. It is widely assumed that 
the larger the infectious nodes degree, the more the infected in-
dividuals by these nodes. Thus, we view the quarantined rate as a 
function of degree to rapidly and effectively control the epidemic 
spreading. The quarantined rate in our model is more appropri-
ate than constant one in the traditional epidemiology and in [24]
and [25]. The resulting model is an susceptible-exposed-infected-
quarantined-recovered (SEIQR) model. Besides that, the birth and 
death of individuals are taken into account to make the models 
more reasonable.

The rest of the paper is organized as follows. Section 2 presents 
an SEIQR model on scale-free networks. Section 3 calculates the 
basic reproduction number and investigates theoretically the sta-
bility of disease-free and endemic equilibria using characteristic 
equations and Lyapunov functions. Section 4 presents some sim-
ulations and a brief discussion. Finally, Section 5 concludes the 
paper with a summary of main results.

2. The model

We assume that there are five states of the nodes on a scale-
free network, and let Sk(t), Ek(t), Ik(t), Q k(t) and Rk(t) denote 
the densities of the susceptible, exposed, infectious, quarantined 
and recovered individuals with degree k at time t , respectively. 
Then, Sk(t) + Ek(t) + Ik(t) + Q k(t) + Rk(t) = 1. Based on the mean-

field theory, we formulate the following model on a scale-free 
network:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk(t)
dt = d − λkSk(t)�(t) − dSk(t),

dEk(t)
dt = λkSk(t)�(t) − (μ + d)Ek(t),

dIk(t)
dt = μEk(t) − (δ(k) + γ + d)Ik(t),

dQ k(t)
dt = δ(k)Ik(t) − (σ + d)Q k(t),

dRk(t)
dt = γ Ik(t) + σ Q k(t) − dRk(t),

(2.1)

where k = 1, 2, . . . , n, with n being the maximum degree num-
ber in this network. The parameter λ represents the infection rate, 
μ is the rate at which the exposed individuals become infectious, 
δ(k) describes the rate at which the infectious individuals become 
quarantined, which is related to degree k, γ (σ ) denotes the recov-
ery rate at which nodes recover from infected (quarantined resp.) 
compartment. Suppose that the newborns are all susceptible and 
deaths (without taking disease-related death into account) are bal-
anced by birth, then, the birth rate is assumed to be equal to 
the per capita natural death rate denoted by d. Based on the epi-
demiological meaning, the parameters μ, δ(k), γ and σ are all 
nonnegative while d and λ are positive. �(t) is the probability 
that a randomly chosen neighbor is infective at time t , and on the 
uncorrelated network, the probability that a link points to a node 
of connectivity i is independent of the connectivity k of the node 
from which the link is emanating. Throughout this paper, we as-
sume that complex networks are uncorrelated. Therefore, �(t) can 
be written as

�(t) = 1

〈k〉
n∑

i=1

ϕ(i)P (i)Ii(t), (2.2)

where 〈k〉 is the average degree of the network, i.e., 〈k〉 =∑n
i=1 i P (i), P (k) is the probability that a node is connected to k

other nodes and follows a power-law, and ϕ(k) is the infectiv-
ity of nodes with degree k, i.e., ϕ(k) denotes the average num-
ber of edges from which a node with degree k can transmit 
the disease [12]. For notational convenience, we define 〈m(k)〉 =∑n

i=1 m(i)P (i) in which m(k) is a function of the variable k.

3. Threshold and stability analysis

It is noted that

� = {
(Sk, Ek, Ik, Q k, Rk) ∈ R+

5n : Sk, Ek, Ik, Q k, Rk ≥ 0,

Sk + Ek + Ik + Q k + Rk ≤ 1,k = 1,2, · · · ,n
}

is a positively invariant set for system (2.1) based on Proposi-
tion 2.2 in [32]. The interior and boundary of � are denoted by 
o
� and ∂� respectively. The system (2.1) always admits a disease-
free equilibrium P0 = {1, 0, 0, 0, 0, . . . , 1, 0, 0, 0, 0} ∈ ∂�, namely, 
Sk = 1, Ek = Ik = Q k = Rk = 0, k = 1, . . . , n. Next, we will derive 
an epidemic threshold, which is an important epidemiological in-
dex in the study of epidemic transmission.

According to [33,34], only the compartments Ek and Ik , 1 ≤
k ≤ n, are involved in the calculation of epidemic threshold. Around 
the disease-free equilibrium P0, the rate matrix F of appearance 
of new infections and the transfer rate matrix V of individuals be-
tween any two compartments are denoted respectively by

F =
(

O A
O O

)
,
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