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We present an entanglement swapping process for unknown nonmaximally entangled photonic states, 
where the standard Bell-state measurement is replaced by a three-step quantum walk-like state 
discrimination process, i.e., the practically nontrivial coupling element of two photons is replaced by 
manipulating their trajectories, which will greatly enrich the dynamics of the coupling between photons 
in realizing quantum computation, and reduce the integration complexity of optical quantum processing. 
In addition, the output state can be maximally entangled, which allows for entanglement concentration 
as well.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In quantum communication and quantum computation, quan-
tum entanglement finds many significant applications, including 
quantum teleportation [1], quantum superdense coding [2], quan-
tum cryptography [3], etc. Typically, only maximally entangled 
states (MES) can lead to the perfect implementation of the above 
protocols. But in real experiments, unavoidable decoherence of 
quantum system is a serious hindrance to the realization of quan-
tum information processing and quantum computation. In general, 
it is inevitable that the degree of entanglement decreases with the 
channel length, leading to an effective non-maximally entangled 
state. Undoubtedly, the use of non-MES could lead to severe de-
crease in the efficiency and fidelity of a quantum communication 
protocol. Therefore, creation of a MES from non-MESs attracts con-
siderable attention in the community. To circumvent this problem, 
Schmidt projection scheme and Procrustean scheme have been 
proposed [4]. Although entanglement swapping scheme was pro-
posed for entangling two remote qubits without direct interaction 
between them [5,6], it can be regarded as an entanglement con-
centration method too [7].

In the standard entanglement swapping process, a Bell state 
measurement constitutes the main swapping mechanism [5]. But, 
the realization of a Bell-state measurement (BSM) is not an easy 
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task in experiment, so efforts have been made to design the en-
tanglement swapping schemes without BSM. For instance, several 
implementation schemes of the entanglement swapping without 
BSM have been proposed both in cavity QED systems [8,9] and in 
quantum dot systems [10]. Essentially, the entanglement swapping 
schemes with or without BSM both require the coupling interac-
tions between two qubits at the intermediate location. The cou-
pling interactions in the swapping scheme with BSM can lead to a 
full discrimination of the four Bell states, meanwhile the coupling 
interactions in the swapping scheme without BSM can only lead to 
a partial discrimination of the four Bell states.

Recently, it was shown that quantum walk (QW) [11] can be 
used to implement a generalized measurement, i.e. a positive op-
erator value measure (POVM) [12], and furthermore, a generalized 
measurement has been realized in discriminating non-orthogonal 
quantum states by executing a properly engineered QW [13]. But, 
in these advances, only the non-orthogonal quantum state discrim-
ination of a single qubit has been studied and realized via QW. 
If this QW based state discrimination process can be generalized 
to the two-qubit case, it can be used to implement entanglement 
swapping too. In this paper, we present a three-step QW-like state 
discrimination scheme for four non-orthogonal two-qubit states, 
and thus the entanglement swapping scheme for two unknown 
non-maximally entangled states. The output state of the swapping 
process is maximally entangled, which allows for entanglement 
concentration as well.

In addition, the coupling between two qubits is the core part of 
the entanglement swapping schemes. But the current existing cou-
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pling mechanisms for photonic qubits and matter qubits are not 
suitable for integration. The coupling mechanism for two photons 
in our entanglement swapping process is realized by manipulating 
the trajectories of the photons. Thus, it is very easy to implement 
and integrate, and the versatile site-dependent operations and the 
intersite trajectory manipulations will greatly enrich the dynamics 
that this process can produce. Since our protocol can formally be 
described as a two-particle three-step QW, this opens new possi-
bilities for quantum computation using the existing optical imple-
mentations of QWs.

This paper is organized as follows. In Sec. 2 we briefly intro-
duce the concepts of entanglement swapping for non-maximally 
entangled states. In Sec. 3 we present our entanglement swapping 
scheme. Sec. 4 summarizes our results.

2. Entanglement swapping for unknown non-maximally 
entangled states

Suppose there are two pairs of polarization-entangled photons 
(1, 2) and (3, 4) shared by three remote users Alice, Bob and Clare:

|ψ〉12 = a |H H〉12 + b |V V 〉12 , (1)

|ψ〉34 = a |H H〉34 + b |V V 〉34 , (2)

where a, b satisfy the normalization condition |a|2 + |b|2 = 1. Pho-
tons (1, 2) belong to Alice and Clare, respectively, and photons 
(3, 4) belong to Clare and Bob. Here, |H〉 (|V 〉) denotes the hor-
izontal (vertical) polarization state of the photons. Without loss 
of generality, we can assume that the superposition coefficients a
and b are all real numbers. Initially, the state of the two photon 
pairs is in a product form, which can be written as

|ψ〉1234 = |ψ〉12 ⊗ |ψ〉34

=
√

a4 + b4

2
(|ψ〉+14|ψ〉1

23 + |ψ〉−14|ψ〉2
23)

+ab(|ϕ〉+14|ψ〉3
23 + |ϕ〉−14|ψ〉4

23), (3)

where

|ψ〉±14 = 1√
2
(|H H〉14 ± |V V 〉)14, (4)

|ϕ〉±14 = 1√
2
(|H V 〉14 ± |V H〉14), (5)

|ψ〉1
23 = 1√

a4 + b4
(a2 |H H〉23 + b2 |V V 〉23), (6)

|ψ〉2
23 = 1√

a4 + b4
(a2 |H H〉23 − b2 |V V 〉23), (7)

|ψ〉3
23 = 1√

2
(|H V 〉23 + |V H〉23), (8)

|ψ〉4
23 = 1√

2
(|H V 〉23 − |V H〉23). (9)

From Eq. (3), we can see that, as long as Clare, who has ac-
cess to photons 2 and 3 (as depicted in Fig. 1), can discriminate 
the four states in Eqs. (6)–(9), four maximally entangled states in 
Eqs. (4), (5) can be generated among the two remote users Al-
ice and Bob. But the four states in Eqs. (6)–(9) are not orthogonal 
to each other, and they cannot be distinguished with unit proba-
bility. So generalized measurements (POVMs) must be introduced 
to discriminate these non-orthogonal states [14,15]. Because the 

Fig. 1. The schematic diagram illustrating the procedure of entanglement swapping 
for unknown non-maximally entangled states.

states to be swapped are unknown,1 the states in Eqs. (6), (7) are 
unknown for us too, and thus these two states cannot be distin-
guished. Nevertheless, the states in Eqs. (8), (9) are totally known 
for us, so, in the following section, we will design a three-step 
QW-like process to discriminate these two states among the four 
non-orthogonal quantum states in Eqs. (6)–(9).

3. Quantum walk-like swapping mechanism

In this section, we are going to design a three-step QW-like 
scheme to distinguish the two states in Eqs. (8), (9) from the four 
non-orthogonal quantum states in Eqs. (6)–(9), where the polar-
ization degrees of photons 2, 3 are regarded as coin degrees of the 
three-step QW-like evolution, and the final position measurements 
on these two one-dimensional (1D) QW-like processes after three 
appropriately designed steps will tell us whether the discrimina-
tion succeeds or not.

Because our three-step scheme is a QW-like one, the state evo-
lutions of the scheme are in similar forms as in QW systems, 
it is helpful for us to briefly review a standard 1D discrete-time 
QW [11]. The total Hilbert space of a walker consists of coin and 
position degrees of freedom, and is given by the tensor product 
H ≡ HC ⊗ HP of two subspaces spanned by {|H〉C, |V 〉C} and 
{|n〉P ,n ∈ Z}, respectively. Here, the subindex C denotes the coin 
degree, P denotes the position degree, and from now on they 
will be omitted for simplicity. One-step evolution of the system 
involves the coin flipping and conditional position shift based on 
the outcome of the coin flipping, and the corresponding unitary 
operation U is

U = S(C ⊗ I), (10)

where C ∈ U (2) is the coin flipping operator, I is the identity 
operator in the position space, and the conditional position shift 
operator S takes the form S = ∑

x(|x +1〉〈x| ⊗|H〉〈H | +|x −1〉〈x| ⊗
|V 〉〈V |). Without loss of generality, we assume the walker is at the 
position x = 0 initially, and the initial state of the coin is a super-
position of |H〉 and |V 〉 states. If the walk starts with the initial 
state |�(0)〉, the final state of the system after t steps becomes

|�(t)〉 = U t |�(0)〉. (11)

In our scheme, the states to be distinguished are two-photon 
(photons 2 and 3 at Clare’s location) joint states in Eqs. (6)–(9)
rather than the single-photon states, so the state evolutions for 
realizing this discrimination process are similar with the case of 
two walkers on two different lines. The joint Hilbert space of the 
two photons 2 and 3, on “line 2” and “line 3”, respectively, is given 
by

H23 ≡ H2 ⊗ H3 ≡ (HC2 ⊗ HP2) ⊗ (HC3 ⊗ HP3). (12)

1 They are unknown in a sense that coefficients a and b are unknown, but the 
type of the states (superposition of both photon polarisations being either horizon-
tal or vertical) is known.
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