
Physics Letters A 381 (2017) 3739–3742

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

General and exact pressure evolution equation

Adrien Toutant

University of Perpignan, PROMES-CNRS (UPR 8521), Tecnosud, Rambla de la Thermodynamique, 66100 Perpignan, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 May 2017
Received in revised form 2 October 2017
Accepted 6 October 2017
Available online 6 October 2017
Communicated by F. Porcelli

Keywords:
Fluid pressure equation
Navier–Stokes equation
Poisson equation
Low Mach number
Artificial compressibility
Incompressible

A crucial issue in fluid dynamics is related to the knowledge of the fluid pressure. A new general pressure 
equation is derived from compressible Navier–Stokes equation. This new pressure equation is valid for all 
real dense fluids for which the pressure tensor is isotropic. It is argued that this new pressure equation 
allows unifying compressible, low-Mach and incompressible approaches. Moreover, this equation should 
be able to replace the Poisson equation in isothermal incompressible fluids. For computational fluid 
dynamics, it can be seen as an alternative to Lattice Boltzmann methods and as the physical justification 
of artificial compressibility.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Incompressible Navier–Stokes equations (INS) describes a fluid 
characterized by infinite sound speed. It is valid in the case of fluid 
flows in isothermal configuration and at low Mach numbers (Mach 
number, Ma = U �/c� is the ratio of the characteristic flow speed 
U � and the speed of sound c� defined at some reference temper-
ature T � and density ρ�). INS equations correspond to a mixture 
of hyperbolic and elliptic partial differential equations. They can be 
written

∂t ui + u j∂ jui + ∂i P = 1

Re
∂ j∂ jui ∂iui = 0 (1)

where u is the fluid velocity, P is the pressure and Re the Reynolds 
number, which represents the ratio between inertial and viscous 
forces [1]. The pressure in (1) is not an independent thermody-
namic variable. It can be seen as a Lagrangian multiplier of the 
incompressibility constraint. It is determined by the Laplace or 
Poisson equation:

∂i∂i P = −(∂ jui)(∂iu j) (2)

In very anisothermal flow, the low Mach number hypothesis con-
ducts to a similar system [2,3]. Considering that only density ρ
depends on temperature, the low Mach number equations can be 
written
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∂t ui + u j∂ jui + 1

ρ
∂i P = 1

ρRe

(
∂ j∂ jui + 1

3
∂i S

)

∂iui = S (3)

where ρ depends on temperature and S is a source term linked 
to conductive heat transfer (S depends on temperature). Again, the 
pressure is determined by a Poisson equation. It can be given by:

∂i

(
1

ρ
∂i P

)
= 1

Re

4

3ρ
∂ j∂ j S +

1

Re
∂ j

(
1

ρ

)(
∂i∂iu j + 1

3
∂i S

)

−(∂ jui)(∂iu j) − u j∂ j S − ∂t S (4)

The physical meaning of (2) and (4) is that in a system with in-
finitely fast sound propagation, any pressure disturbance induced 
by the flow is instantaneously propagated into the whole domain. 
This elliptic problem is a crucial issue for fluid dynamics. Indeed, 
the INS equations are difficult to study analytically and numeri-
cally. This difficulty has motivated the search of alternative numer-
ical approaches to determine pressure without solving the Poisson 
equation. Three different ways have been found. The first is the so-
called artificial compressibility method where a pressure evolution 
equation is postulated [4]. The second way is the Lattice Boltz-
mann method (LBM) which uses a velocity-space truncation of the 
Boltzmann equation from the kinetic theory of gases [5]. The third 
way consists in adopting an inverse kinetic theory which permits 
the identification of the (Navier–Stokes) dynamical system and 
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of the corresponding evolution operator which advances in time 
the kinetic distribution function and the related fluid fields [6]. 
The pressure evolution equation obtained by this method is non-
asymptotic. The full validity of INS equations is preserved.

In this paper, we determine a general and exact pressure evolu-
tion equation for all real dense fluids for which the pressure tensor 
is isotropic. Unlike the work of Tessarotto et al. [6], the obtained 
pressure equation is a physical one and not a mathematically rig-
orous theory for INS equations. The obtained general and exact 
pressure evolution equation gives the physical bases of artificial 
compressibility method and it allows the study of very anisother-
mal flow contrary to LBM. The goal is similar to the reduced 
compressible Navier–Stokes equations (RCNS) derived by Ansumali 
et al. [7] and the proposed pressure equation is very similar to the 
grand potential equation derived by Karlin et al. [8]. However we 
will argue that the use of pressure instead of the grand potential 
simplifies the equation of compressible hydrodynamics. Moreover, 
because the proposed pressure equation is valid for all real dense 
fluids, it builds bridge between compressible, low-Mach and in-
compressible approaches.

In section 2, we will determine the general and exact pres-
sure evolution equation (without any additional assumptions). This 
equation generalizes the one used by Zang et al. in the particular 
case of an ideal gas [9]. In section 3, we will simplify this equation 
in the low Mach number limit. Finally, in section 4, we will reduce 
the equation for low Mach number and isothermal flow.

2. General pressure evolution equation

The total energy E conservation is given by

∂t(ρE) + ∂ j((ρE + p)u j) = ∂ j(σi jui) − ∂ jq j (5)

with σi j the shear-stress tensor for a Newtonian fluid

σi j = 2μSij − 2

3
μδi j Skk Si j = 1

2
(∂iu j + ∂ jui) (6)

and qi the conductive heat flux

qi = −κ∂i T (7)

Introducing internal energy U = E − ui ui
2 and enthalpy H = U + P

ρ , 
one gets

ρDt H = Dt P − ∂iqi + � � = σi j∂iu j (8)

with Dt the material derivative (total derivative [1]):

Dtφ = ∂tφ + ui∂iφ (9)

Using the relations of heat capacity at constant pressure cp and of 
the isobaric thermal expansion coefficient α(

∂ H

∂T

)
P

= cp

(
∂ H

∂ P

)
T

= 1

ρ
(1 − Tα) with α = − 1

ρ

(
∂ρ

∂T

)
P

(10)

an alternative formulation can be derived for temperature

ρcp Dt T = TαDt P − ∂iqi + � (11)

We propose to derive a new pressure equation from the tempera-
ture formulation (11). We introduce the isothermal compressibility 
coefficient χT = 1

ρ

(
∂ρ
∂ P

)
T

and we consider temperature as a func-

tion of density and pressure Dt T =
(

∂T
∂ρ

)
P

Dtρ + (
∂T
∂ P

)
ρ

Dt P . Using 
mass conservation and (11), the recomputation poses no difficul-
ties and we here write the result:

(ρcp
χT

α
− αT )Dt P = −∂iqi − ρcp

α
∂iui + � (12)

In order to simplify this expression, one introduces isochoric heat 
capacity cv = (

∂U
∂T

)
ρ

, heat capacity ratio γ = cp
cv

and the Mayer 
relation

α2T = ρcvχT (γ − 1) (13)

One obtains

Dt P + γ

χT
∂iui = α

ρcvχT
(� − ∂iqi) (14)

Sound velocity c and the isentropic compressibility coefficient χS

are given by

c2 =
(

∂ P

∂ρ

)
S

χS = 1

ρ

(
∂ρ

∂ P

)
S

(15)

Using the Reech relation γ = cp
cv

= χT
χS

, one obtains the general and 
exact pressure evolution equation

Dt P + ρc2∂iui = α

ρcvχT
(� − ∂iqi) (16)

In the particular case of an ideal gas α = 1
T , χT = 1

P and c2 = γ rT
with r the specific gas constant, this equation is equivalent to the 
one used by Zang et al. [9,10]. It is worth noting that equation (16)
can be used for any real dense fluids (gas or liquid) without re-
striction on Mach number or temperature gradient. It gives the 
physical bases of artificial compressibility methods that postulate 
the pressure equation. The pressure equation (16) can be seen as 
an energy equation: to complete the system, one has to consider in 
addition mass conservation, momentum conservation and an equa-
tion of state.

3. Pressure equation for low Mach number flow

At this step, the pressure evolution equation (16) depends on 
the total derivative. At low Mach number, the first simplification 
consists in assuming that viscous dissipation is negligible. We now 
show that, at low Mach number, advection can be neglected. One 
defines the following nondimensionalized quantities:

ρ X = ρ

ρ�
u X

i = ui

c�

P X = γ P

ρ�(c�)2
t X

P = 1

Ma2

tU �

x�
(17)

It is worth noting that in the classical low Mach number assump-
tion, nondimensionalized time is defined by t X

U = tU �

x� . The factor 
1

Ma2 is justified by the fact that pressure time evolution is much 
faster than velocity time evolution (subscripts U and P indicate 
that the nondimensionalized time corresponds to velocity or pres-
sure respectively). One defines moreover, the Reynolds number Re, 
the Prandtl number Pr and the Peclet number Pe:

Re = ρU �x�

μ
Pr = ν

aT
Pe = PrRe (18)

One uses the asymptotic expansion of pressure, temperature and 
velocity

P X = P0 + Ma2 P1 (19)

T X = T0 + Ma2T1 (20)

u X
i = Ma(ui0 + Ma2ui1) (21)
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