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We studied the thermodynamic behaviors of non-interacting bosons and fermions trapped by a scale-
invariant branching structure of adjustable degree of heterogeneity. The full energy spectrum in tight-
binding approximation was analytically solved. We found that the log-periodic oscillation of the specific 
heat for Fermi gas depended on the heterogeneity of hopping. Also, low dimensional Bose–Einstein 
condensation occurred only for non-homogeneous setup.
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1. Introduction

Tight-binding quantum gases upon quasiperiodic or fractal-like 
structures with scale symmetry have been studied intensively over 
the past few decades [1–23]. In most cases, the energy spec-
trum of the ideal gas and corresponding density of states show 
self-similarity and power-law behaviors at the same time. This is 
responsible for a sequence of unique behaviors related to localiza-
tion of states [1–3], quantum transport [4–6], specific heat [7–14], 
Bose–Einstein condensation (BEC) [15–23], etc. Though without in-
troducing interaction, the simplest model yields lots of interest-
ing phenomena due to the complex topology of fractal-like lattice 
structures. Different from isotropic models, the hopping of parti-
cles is non-trivial in these cases. Naturally one will ask how the 
heterogeneity of hopping (site–site coupling) influences the model.

The heterogeneity of hopping consists of two aspects: the net-
work topology of lattices and the variation of coupling strength. 
There have been many results on how the topology of lattice struc-
tures gives birth to unusual behaviors of hopping gases. For exam-
ple, the low dimensional BEC of non-interacting bosons, trapped by 
diamond hierarchical lattices, only takes place while the branching 
parameter of the trap structure is lager than 2 [23]. Recently, the 
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quantum transport on Sierpinski carpets is also found to be deter-
mined by structural parameters [6]. One can guess the topological 
properties of lattice structures decide how curved the underlying 
space is for the hopping gas. Though locally similar to an isotropic 
Euclidean lattice, a fractal-like structure can produce totally differ-
ent outcomes when serving as traps for hopping gas. To describe 
those anisotropic structures more quantitatively, some indicators 
including the fractal dimension and the spectral dimension [24–28]
are introduced. A deterministic relation among them is also pro-
vided for some renormalizable structures [29].

However, it is rarely reported that how the heterogeneity of the 
strength of site–site couplings (hopping amplitude) influences the 
behaviors of quantum gases. The heterogeneity of hopping ampli-
tudes is worth studying since the site–site coupling is suggested 
to play an important role in other similar models. There are many 
cases that can not be approached by mean field approximation in 
real world systems. For example, the heterogeneity in the site–site 
coupling significantly affects the epidemic spreading [30,31], trans-
portation [32,33], synchronization [34,35], random walks [36,37], 
diffusive processes [38], voter models [39,40], etc., on weighted 
networks. We will fill this gap by a case study regarding the 
non-interacting Fermi and Bose gases upon a parameterized scale-
invariant branching structure. We will show that the heterogeneity 
of coupling strength has a decisive influence on the thermody-
namic behaviors even in the simplest model.

This paper is organized as the following. First we construct a 
scale-invariant branching structure with two parameters control-
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Fig. 1. A sketch of G(2,1).

ling the heterogeneity of our model. In tight-binding approxima-
tion we define the normalized Hamiltonian. By appropriate renor-
malization the full spectrum is obtained. Then, for Fermi gas, we 
study its Fermi energy and subsequent log-periodic oscillation of 
specific heat associated to special weight parameter. As for Bose 
gas, we investigate its phase transition phenomenon at low tem-
perature and find the relation between the weight parameter and 
BEC.

2. Preliminary

A weighted branching structure is constructed iteratively, see 
Fig. 1.

G(0) is a chain of length 1 where two vertices are connected by 
an edge of unit weight. For t > 0, G(t) is obtained from G(t−1) by 
the following transformation. For each edge of weight w in G(t−1) , 
mw(m > 0) new vertices are connected to both sides of the edge 
respectively with unit weight, meanwhile, the weight of the old 
edge is increased by mθ w(θ � 0). The parameters m, θ are all inte-
gers. Let G(m, θ) = lim

t→∞ G(t) . An infinite branching structure forms.

By construction, the total number of the vertices for G(t) is

Nt = 2

2 + θ
[(θm + 2m + 1)t + θ + 1]. (1)

Name these vertices by v1, v2, · · · , v Nt . aij denotes the weight of 
the edge connecting vi and v j . aij is 0 when vi and v j are not 
adjacent. Further we define the degree of vi as di = ∑

j ai j .

To describe the topological structure of G(t) , we introduce the 
adjacency matrix (A(t))i j = aij and the degree matrix (D(t))i j =
δi jdi . Let the normalized stochastic matrix [41] for Markov chains 
on G(t) be T (t) = √

D(t) A(t)
√

D(t) . Obviously, ti j = aij√
did j

. For 

G(m, θ), define T = lim
t→∞ T (t) .

3. Tight-binding model on G(m, θ)

Suppose the structure we constructed denotes a trapping struc-
ture for quantum gases. The edges connecting two vertices rep-
resent the correlation of two traps. The tight-binding Hamiltonian 
describing the system writes [18,21]

Ĥ0 =
∑

i

diâ
†
i âi −

∑
i j

ai jâ
†
i â j . (2)

Here â†
i and âi are creation and annihilation operators and aij

denotes the hopping amplitude between two coupled traps. The 
second summation in Eq. (2) is taken over all neighboring vertices 
i and j. Clearly, when θ = 0, aij is constantly 1 for all existing site–
site correlations. This is the most homogeneous case in our model. 
For non-vanishing θ , the hopping amplitude is heterogeneous.

From Eq. (2), we know the spectrum of Ĥ0 is unbound for infi-
nite network (t → ∞). However, by rescaling the frequency space 

Fig. 2. (Color online.) Eigenvalue spectra related to θ from 0 to 6 when m = 2.

Fig. 3. (Color online.) Density of states associated to G(2,0) and G(2,1).

(multiplying the Hamiltonian by diagonal operators at both sides), 
we can normalize Ĥ0 as

Ĥ = −
∑

i j

ti jâ
†
i â j, (3)

of which the spectrum lies on [−1, 1].
The matrix T we defined previously hence gives a full descrip-

tion of Ĥ. The allowed energy for Ĥ is the eigenvalue spectrum 
of −T . The spectrum is a Julia multiset J R ⊂ [−1, 1] generated by 
the inverse of the function

R(x) = θm + m + 1

θm + 1
x − m

(θm + 1)x
(4)

from {−1, 1} ⋃{0} [42,43]. A detailed description of J R is provided 
in the appendix. Fig. 2 shows how the eigenvalue spectra vary with 
the weight parameter θ . When θ → ∞, the spectrum is dense in 
[−1, 1].

Let deg(t)(ε) denote the multiplicity of the eigenvalue ε of 
−T (t) . Take deg(t)(ε) = 0 if ε is not an eigenvalue. The density of 
states on [−1, 1] is

ρ(ε) =
∑

ε′∈ J R

δ(ε − ε′) lim
t→∞

deg(t)(ε′)
Nt

(5)

where δ(ε − ε′) is the Dirac delta function. Fig. 3 is a schematic 
representation of ρ(ε) related to different θ . Obviously, ρ(ε)

shows self-similar properties.
Fig. 2 and Fig. 3 together show that the spectrum related to 

G(m, θ) is highly degenerate and fractal-like. Besides, the spectrum 
is symmetric with respect to ε = 0, which possesses the largest 
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