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We study a one-dimensional system that includes both a commensurate off-diagonal modulation of 
the hopping amplitude and an incommensurate, slowly varying diagonal on-site modulation. By using 
asymptotic heuristic arguments, we identify four closed form expressions for the mobility edges. We 
further study numerically the inverse participation ratio, the density of states and the Lyapunov exponent. 
The numerical results are in exact agreement with our theoretical predictions. Besides a metal–insulator 
transition driven by the strength of the slowly varying potential, another four insulator–metal transitions 
are found in this model as the energy is increased in magnitude from the band center (E = 0) to the 
mobility edges (±Ec2, ±Ec1).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Anderson localization [1], the absence of diffusion of matter 
waves in disorder systems, is an active research subject in con-
densed matter physics due to its importance and complexities. 
With regard to the randomly-distributed potentials the scaling 
theory [2] predicts that there is no metal–insulator transition in 
one-dimensional (1D) systems. Hence all wave-functions are ex-
ponentially localized no matter how small the existed disorder 
is. However, the emergence of quasiperiodic/incommensurate po-
tentials in 1D systems [3–13] goes beyond this prediction. As an 
important paradigm, the Aubry–André (AA) model [14] can un-
dergo a transition from the extended state to the localized state 
as the amplitude of the incommensurate potential increases. The 
nature of the AA model has been well understood with extensive 
researches [15–20]. It is well known that at the phase transition 
point the spectrum of the AA model is a Cantor set and all wave-
functions are critical, i.e., neither extended nor localized. However, 
unlike the Anderson transition in 3D situations, there is no mo-
bility edge [21–23] in the AA model, where all wave-functions are 
either extended or localized (critical), depending on the relative 
strength of the incommensurate potential and the hopping ampli-
tude.

The concept of the mobility edge, first proposed by Mott [24]
regarding the 3D Anderson model, is signaled by an energy-level 
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border separating the localized and extended bands. Mott argued, 
if the extended and localized states can coexist at the same spec-
tral energy level, then, an arbitrarily small energy perturbation 
leads to the hybrid between localized and extended states. As a re-
sult, only extended states can remain, which is not true. However, 
whether a 1D system can host mobility edges is another interest-
ing question. About thirty years ago a unique class of systems with 
1D potentials [25–29], i.e., very slowly varying incommensurate 
potentials in real space, was introduced and extensively studied. 
These deterministic (diagonal) potentials are neither random nor 
simply incommensurate. The important finding by Sarma et al. [28]
is that, there is a metal–insulator transition in this model with the 
mobility edges located at certain energies with the eigenstates at 
the band center being all extended whereas the band-edge states 
all localized. Since then, different variations of the 1D models con-
taining mobility edges have been studied, including those with a 
rational term added to the slowly varying incommensurate poten-
tial [29] or the Aubry–André-like model with a duality symme-
try [30,31]. Recently, the off-diagonal AA model, an extension of 
the AA model including both commensurate and incommensurate 
off-diagonal hopping modulations, has attracted much attention 
due to the arising rich and novel quantum phases, especially the 
important nontrivial zero-energy topological edge states [32–34].

Here we include an off-diagonal commensurate modulation in 
Sarma’s model with slowly varying incommensurate diagonal mod-
ulations. While the latter brings out a metal–insulator transition, 
we find that, the former modulate the mobility edges greatly. This 
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result opens perspectives for further investigations on the interplay 
between mobility edge and off-diagonal modulations.

Our generalized AA model, including commensurate off-diagonal 
and slowly varying incommensurate diagonal modulations, is ex-
pressed as

Ĥ = −
L−1∑
i=1

(t + λi)(ĉ†
i ĉi+1 + h.c.) +

L∑
i=1

V in̂i, (1)

where ĉi is the fermionic annihilation operator, n̂i = ĉ†
i ĉi is the 

particle number operator, L is the total number of sites, λi =
λ cos(2πbi) with 0 < λ < 1 being the strength of the commensu-
rate modulation on the off-diagonal hopping amplitude, and V i =
V cos(2πβiv + φ) with 0 < v < 1 and V > 0 being the strength 
of the slowly varying incommensurate potential. Without loss of 
generality, we choose the parameters b = 1/2, β = (

√
5 − 1)/2, the 

phase in the incommensurate modulation φ = 0 and v = 0.5. For 
convenience, t = 1 is set as the energy unit.

When λ = 0 and v = 1, our model reduces to the AA model, 
while λ = 0 and 0 < v < 1 is the extended AA model studied 
by Sarma et al. [28]. It is well known that this model has two 
mobility edges located at energies ±|2 − V |. When V < 2, all wave-
functions with eigenenergies in [V − 2, 2 − V ] are extended and 
otherwise localized. When V > 2, all wave-functions are localized, 
which is same as that in the AA model. In this paper, we focus 
on the situation with 0 < λ < 1 and 0 < v < 1. The main findings 
are, (i) when V < 1 − λ there exist two additional mobility edges 
located at ±|2λ + V | besides those at ±|2 − V |, (ii) the all-wave-
function-localized transition point is located at V = 1 − λ.

The rest of the paper is organized as follows. In Sec. 2, we the-
oretically give the heuristic arguments for the Hamiltonian (1). In 
Sec. 3, we present our numerical results and compare them with 
the theoretical analysis. The conclusion is summarized in Sec. 4.

2. Heuristic arguments

The slowly varying incommensurate potential brings up new 
nature of localization, which is substantially different from the 3D 
Anderson model [28]. To demonstrate the existence of mobility 
edges, Sarma et al. [28] presented some preliminary heuristic ar-
guments and applied the semiclassical WKB technique. Here we 
also implement this method to obtain the explicit expressions of 
mobility edges.

By noticing that the slowly varying potential difference of V i =
V cos(2πβiv) vanishes in the thermodynamic limit [28], we thus 
write

dV i

di
= −2V πβiv−1 sin(2πβiv). (2)

When i → ∞, Eq. (2) can be written as

lim
i→∞

∣∣∣∣dV i

di

∣∣∣∣ = − lim
i→∞

2V πβ
| sin(2πβiv)|

i1−v
= 0, (3)

since 0 < v < 1. Equivalently, the potential difference V i+1 −
V i → 0 when the lattice number i is large enough, i.e., the poten-
tial V i becomes a constant. This asymptotic property of “being con-
stant” of V i is crucial for the localization property of this model. 
On the other hand, another unique characteristic of our model 
is the existence of the off-diagonal commensurate modulation λi
which leads to a parity symmetry. The Schrödinger equations for 
Eq. (1) rewritten according to the odd and the even lattice site be-
come

(1 − λ)ψ2m + (1 + λ)ψ2m−2 + Cψ2m−1 = 0,

(1 + λ)ψ2m+1 + (1 − λ)ψ2m−1 + Cψ2m = 0,

(1 − λ)ψ2m+2 + (1 + λ)ψ2m + Cψ2m+1 = 0,

(4)

where m is an arbitrary positive integer and C = E −
V cos(2πβ(2m − 1)v ) = E − V cos(2πβ(2m)v ) = E −
V cos(2πβ(2m + 1)v ) since all the V i are constant. From Eq. (4)
we obtain

ψ2m+2 + 2 + 2λ2 − C2

1 − λ2
ψ2m + ψ2m−2 = 0. (5)

Following the asymptotic heuristic argument [28], we write ψ2m ∼
Zm , where Z is a complex quantity. Then Eq. (5) becomes

Z 2 + 2 + 2λ2 − C2

1 − λ2
Z + 1 = 0, (6)

to which the complex solutions are

Z1,2 = −G ± √
G2 − 4

2
(7)

with G = 2+2λ2−C2

1−λ2 . From Eq. (7) we conclude that the amplitude 
is complex or extended (due to |Z | = 1) if |G| < 2 whereas real or 
localized if |G| > 2. Note Cmax = |E| + V and Cmin = |E| − V , so if 
E and V are fixed, we get

Gmax = 2 + 2λ2 − (|E| − V )2

1 − λ2
,

Gmin = 2 + 2λ2 − (|E| + V )2

1 − λ2
.

(8)

The conditions for extended and localized solutions are respec-
tively given by

Gmax < 2 ⇒ 2λ + V < |E|(extended),

Gmax > 2 ⇒ 2λ + V > |E|(localized),

Gmin > −2 ⇒ 2 − V > |E|(extended),

Gmin < −2 ⇒ 2 − V < |E|(localized).

(9)

Note that for the existence of the mobility edges there is an im-
plicit condition that 2 − V > 2λ + V , i.e., V < 1 −λ. If this condition 
is satisfied there will be four mobility edges with ±Ec1 = ±|2 − V |
and ±Ec2 = ±|2λ + V |. That is, the model defined by the Hamil-
tonian (1) with 0 < v < 1 and V < 1 − λ has localized states at 
the band center (−Ec2 < E < Ec2) and at the band edges (E > Ec1, 
E < −Ec1), extended states at −Ec1 < E < −Ec2 and Ec2 < E < Ec1.

Eq. (9) also implies that there are four insulator–metal transi-
tions in the system as the energy is increased in magnitude from 
the band center (E = 0) to the band edges (±Ec2, ±Ec1).

When V > 1 − λ, all the states are localized and there is no 
extended state, which means that V = 1 − λ is a transition point 
from a state of mobility edge to a state of all the wave-functions 
localized.

3. Numerical results

In this section we present detailed numerical analysis to sup-
port the theoretical predications given in the previous section, 
which is exact in the thermodynamic limit. We directly diago-
nalize the model Hamiltonian (1) to obtain the eigenenergies E
and the corresponding wave-functions ψ . After that, it is fairly 
straightforward to calculate the typical physical quantities used in 
the disordered system, such as the inverse participation ratio and 
the Lyapunov exponent, to distinguish the localized and extended 
states. All the numerical results are in exact agreement with the 
theoretical predictions in Sec. 2, demonstrating that the asymp-
totic theory works very well even for the finite-sized systems of 
which the potential is not strictly a constant.
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