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Using the Harrison model and Green’s function technique, impurity doping effects on the orbital 
density of states (DOS), electronic heat capacity (EHC) and magnetic susceptibility (MS) of a monolayer 
hydrogenated graphene, chair-like graphane, are investigated. The effect of scattering between electrons 
and dilute charged impurities is discussed in terms of the self-consistent Born approximation. Our results 
show that the graphane is a semiconductor and its band gap decreases with impurity. As a remarkable 
point, comparatively EHC reaches almost linearly to Schottky anomaly and does not change at low 
temperatures in the presence of impurities. Generally, the total EHC and MS increases with impurity 
doping. Surprisingly, impurity doping only affect the salient behavior of p y orbital contribution of carbon 
atoms due to the symmetry breaking.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Graphene as a semimetal has a linear band structure near the 
Dirac points of the Brillouin zone. It was first isolated in 2004 [1]
as a weird material because of its unique band structure. Graphene 
is a single atomic layer with honeycomb lattice including two in-
terpenetrating triangular sublattices C1 and C2, as shown in Fig. 1. 
Graphene has attracted so much attentions both theoretically and 
experimentally because of its possible applications in nanoscale 
electronics and optoelectronics [1–9]. In graphene, conductance 
electrons are from π bonding of pz orbitals and C1 and C2 atoms 
are joined by covalent, σ , bonding of s, px and p y orbitals. There-
fore, in graphene hybridization is sp2. Graphene is gapless and this 
creates a problem for using in the electronic devices [10,11]. The 
band gap is a measurement of the threshold voltage and on-off ra-
tio of the field effect transistors [12,13]. It is desirable to have band 
gap in materials in addition to their novel features. Theoretically, 
a fully hydrogenated graphene realized in 2007 [14] and also ex-
perimentally predicted in 2009 [15]. They have been found that in 
the new graphene-like 2D-material, hydrogenated graphene, called 
graphane with sp3 covalent bonds, carbon atoms react with hydro-
gen (H) atoms which opens a band gap about 3.5 eV in graphene, 
making graphene for using such a highly motivated new material 
in carbon-based nanoelectronics. In graphane, the pz orbitals of 
carbon atoms are saturated with hydrogen atoms. Two kinds of 

E-mail address: m.yarmohammadi69@gmail.com.

graphane is observed, chair-like and boat-like which here we con-
sider chair-like graphane for our investigations.

Recently, several works has been done to compare the thermal 
properties including thermal conductivity and temperature depen-
dence of EHC of low-dimensional systems with macroscale ones 
[16–19]. Graphene as the best thermal conductor in nature is the 
result of Balandin paper in 2011 [17]. Furthermore, the change in 
orbitals hybridization of atoms can be changed the electronic prop-
erties of material which this affects the other properties such as 
thermal and magnetic indices. By changing the hybridization from 
sp2 to sp3, from graphene to graphane, the dynamics of lattice 

Fig. 1. (a) Schematic diagram of unit cell of chair-like graphane. (b) Top view of 
chair-like graphane sheet which the dashed lines illustrate the Bravais lattice unit 
cell. The primitive vectors are denoted by �a1 and �a2, while a0 is the inter-atomic 
distance. (c) Side view of the system.
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changes. As an example, Neek-Amal and Rajabpour are calculated 
the thermal contraction and heat capacity of graphane and intro-
duce a significant Kapitza thermal resistance [20,21]. It is neces-
sary to mention that the thermal properties of a material may find 
applications in thermal management and thermoelectric [22–26]. 
Since all nanoelectronic applications are closely related to the ther-
mal properties, the investigation of the thermodynamic properties 
is important [27]. The EHC of a system is defined as the ratio of 
that portion of the heat used by the carriers (here, Dirac fermions) 
to the rise in temperature of the system. On the other hand, MS 
is the degree of magnetization of a material in response to an ap-
plied magnetic field. Many works has been done to study the MS 
of diverse carbon allotropes [28–38].

Electrons in a system scatters from impurities with a scatter-
ing rate τ . This induces a characteristic energy scale h̄/τ in the 
limit of zero doping, that is, at Dirac points. For this reason, im-
purities have a strong effect on physical properties of material for 
its applications in electronic devices [39,40]. Many authors have 
been shown that the impure graphane can be used in transistor 
devices due to the decreased band gap. For example, Gharekhan-
lou et al. [41] reported that graphane materials can be used as 
bipolar transistor and introduced a 2D p–n junction based on 
graphane [42]. Savini et al. [43] used p-doped graphane to fab-
ricate a prototype high-Tc electron–phonon superconductor. Here, 
we consider the randomly impurity doping of foreign atoms on 
chair-like graphane and investigate the total and orbital DOS, EHC 
and MS of this impure system. We witness that the band gap de-
creases with impurity doping which is useful for 2D p–n junctions 
based on graphane. Tight-binding Harrison model within the self-
consistent Born approximation describes the dynamic of carriers. 
The outline of this paper is as follows: Section 2 describes the 
Hamiltonian and calculation details. In Sec. 3, we show the total
and orbital DOS, EHC and MS of the system under impurity dop-
ing and in Sec. 4 the numerical results is explained. Finally, Sec. 5
is the summary of paper.

2. The effective Hamiltonian model

In this section, we present the Harrison model to describe the 
low-energy dynamic of Dirac fermions on the honeycomb lattice 
of graphane. In Fig. 1, each unit cell includes 4 atoms: two carbon 
and two hydrogen atoms. The 2s, 2px , 2p y and 2pz orbitals of each 
carbon atom and 1s orbital of each hydrogen atom participates in 
the bonding of sp3 hybridization. Thus, the Hamiltonian can be 
written as 10 × 10 matrix

H(�k) =
(

H11(�k) H12(�k)

H21(�k) H22(�k)

)
(1)

where H21(�k) = H†
12(

�k) and the defined tabular form of H11(�k) is 
given by

H11(�k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

hC1C1
ss hC1C1

spx hC1C1
sp y hC1C1

spz hC1H1
ss

hC1C1
pxs hC1C1

px px hC1C1
px p y hC1C1

px pz hC1H1
pxs

hC1C1
p y s hC1C1

p y px hC1C1
p y p y hC1C1

p y pz hC1H1
p y s

hC1C1
pzs hC1C1

pz px hC1C1
pz p y hC1C1

pz pz hC1H1
pz s

hH1C1
ss hH1C1

spx hH1C1
sp y hH1C1

spz hH1H1
ss

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

In our calculations, we use the reported amounts as below [44–46]
by setting h̄ = kB = 1. Also on-site energy of p orbitals are consid-
ered as the origin of energy. As a remarkable point, the sign of 
on-site energy of s orbitals is negative, while for p orbitals can be 
negative or positive [44,47–49].

hC1C1
ss = −8.868 eV, hC1C1

spx = hC1C1
sp y = hC1C1

spz = 0,

hC1H1
ss = −2.50 eV,

hC1C1
pxs = hC1C1

px px = hC1C1
px p y = hC1C1

px pz = hC1H1
pxs = 0,

hC1C1
p y s = hC1C1

p y px = hC1C1
p y p y = hC1C1

p y pz = hC1H1
p y s = 0,

hC1C1
pzs = hC1C1

pz px = hC1C1
pz p y = hC1C1

pz pz = 0, hC1H1
pzs = 5.72 eV,

hH1C1
ss = −2.50 eV, hH1C1

spx = hH1C1
sp y = 0,

hH1C1
spz = hC1H1

pz s , hH1H1
ss = −2.40 eV. (3)

Also the general form of H12(�k) reads

H12(�k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

hC1C2
ss hC1C2

spx hC1C2
sp y hC1C2

spz hC1H2
ss

hC1C2
pxs hC1C2

px px hC1C2
px p y hC1C2

px pz hC1H2
pxs

hC1C2
p y s hC1C2

p y px hC1C2
p y p y hC1C2

p y pz hC1H2
p y s

hC1C2
pzs hC1C2

pz px hC1C2
pz p y hC1C2

pz pz hC1H2
pz s

hH1C2
ss hH1C2

spx hH1C2
sp y hH1C2

spz hH1H2
ss

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

in which [44–46]

hC1C2
ss = −6.769(1 + 2ε(�k)) eV,

hC1C2
spx = −5.580(1 − ε(�k)) eV,

hC1C2
sp y = −5.580γ (�k) eV, hC1C2

spz = hC1H2
ss = 0,

hC1C2
pxs = 5.580(1 − ε(�k)) eV,

hC1C2
px px = (2.031ε(�k) − 5.037) eV,

hC1C2
px p y = 4.035γ (�k) eV hC1C2

px pz = hC1H2
pxs = 0,

hC1C2
p y s = 5.580γ (�k) eV, hC1C2

p y px = 4.035γ (�k) eV,

hC1C2
p y p y = −(6.039ε(�k) − 3.033) eV hC1C2

p y pz = hC1H2
p y s = 0,

hC1C2
pzs = hC1C2

pz px = hC1C2
pz p y = 0, hC1C2

pz pz = tπpz pz
(1 + 2ε(�k)) eV,

hC1H2
pzs = 0, hH1C2

ss = hH1C2
spx = hH1C2

sp y = hH1C2
spz = hH1H2

ss = 0. (5)

with ε(�k) = ei�k.�R+ cos(�k.�R−) and γ (�k) = i
√

3ei�k.�R+ sin(�k.�R−) where 
�R± = ( �a1 ± �a2)/2. According to Fig. 1, the primitive unit cell vectors 
of honeycomb lattice are given by

�a1 = a0

2
(
√

3î + ĵ), �a2 = a0

2
(
√

3î − ĵ) (6)

where a0 ≈ 1.4 Å = 0.14 nm is the length of lattice translational 
vector. Also î and ĵ are unit vectors along the x and y direc-
tions, respectively. The H22(�k) term is the same with H11(�k), but 
hC2H2

pz s = −hC1H1
pz s and hH2C2

spz = −hH1C1
spz due to the opposite place of 

H2 with respect to the graphane plane in the unit cell, as shown in 
Fig. 1. Since unit cell of graphane includes four atoms, the Green’s 
function can be written as the 4 × 4 matrix. In the Matsubara 
formalism [50], each element of the Green’s function matrix is de-
fined by

Gαβ(�k, γ ) = −〈Tγ ck,α(γ )c†
k,β

(0)〉

Gαβ(�k, iωn) =
1/kB T∫

0

eiωnγ Gαβ(�k, γ )dγ (7)

where Tγ is the time correlation, c = a(b) and α, β refer to each 
sublattice atoms C1, C2 and H1, H2 and γ is the imaginary time. 
Also ωn = (2n + 1)πkB T is the Fermionic Matsubara’s frequency. 
The Green’s function matrix of the system (G) can be readily ob-
tained by the following equation
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