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A novel hybrid swarm intelligence algorithm for chaotic system parameter estimation is present. For this 
purpose, the parameters estimation on Lorenz systems is formulated as a multidimensional problem, 
and a hybrid approach based on particle swarm optimization with ant colony optimization (PSO–ACO) 
is implemented to solve this problem. Firstly, the performance of the proposed PSO–ACO algorithm is 
tested on a set of three representative benchmark functions, and the impact of the parameter settings 
on PSO–ACO efficiency is studied. Secondly, the parameter estimation is converted into an optimization 
problem on a three-dimensional Lorenz system. Numerical simulations on Lorenz model and comparisons 
with results obtained by other algorithms showed that PSO–ACO is a very powerful tool for parameter 
estimation with high accuracy and low deviations.

© 2016 Published by Elsevier B.V.

1. Introduction

Chaos theory is one of the most important achievements in 
the nonlinear system research field [1]. In recent years, nonlin-
ear systems have drawn considerable attention to describe several 
phenomena related to both complex and dynamical systems [2]. In 
this context, partial differential equations have played an impor-
tant role in the characterization of these phenomena, allowing to 
compare experiment with theory. Although information about the 
physical properties for many of these systems is available, not all 
dynamical parameters are usually known, and therefore they need 
to be estimated [3].

Parameter estimation for chaotic systems is an important is-
sue in non-linear science (such as signal processing and control 
theory), which has attracted increasing interest in various research 
fields and which could be essentially formulated as a multidimen-
sional optimization problem [4]. So far, different kinds of classi-
cal techniques have been developed to handle these problems [3]. 
Among them, the meta-heuristic based methods (such as the ge-
netic algorithm, the particle swarm optimization algorithm, and 
the differential evolution algorithm) are some of the most popu-
lar methods used to formulate the parameter estimation problem 
as a multidimensional optimization problem [5].

The study of the parameter estimation problem has a long his-
tory, and it has been carried out with emphasis on the Lorenz 

* Corresponding author.
E-mail address: jlazzus@dfuls.cl (J.A. Lazzús).

chaotic system. This system is the first chaotic attractor in a three-
dimensional autonomous system, and it was proposed by Lorenz 
in 1963 when he was studying atmospheric convection [6]. In 
the last years, different meta-heuristic algorithms have been pro-
posed for parameter estimation on this system. In this way, Dai 
et al. [7] used a genetic algorithm (GA) to estimate parameters 
of Lorenz system (but one-dimensional parameter estimation was 
only taken into consideration). He et al. [4] proposed a particle 
swarm optimization (PSO) for estimating parameters of this sys-
tem. Later, Gao et al. [8] used a similar PSO approach. In other 
approaches on Lorenz system, Gao et al. [9] used a novel quantum-
behaved particle swarm optimization (NQPSO). Yang et al. [10]
applied a quantum-behaved particle swarm optimization (QPSO). 
Sun et al. [11] proposed a variant of PSO called drift particle 
swarm optimization (DPSO). Modares et al. [12] applied an im-
proved particle swarm optimization (IPSO). Alfi [3] introduced a 
novel adaptive particle swarm optimization (APSO) combining an 
adaptive mutation mechanism and a dynamic inertia weight into 
the conventional PSO algorithm. Alfi [13] proposed a novel particle 
swarm optimization namely dynamic inertia weight PSO (DIW-
PSO). Using the most recently introduced swarm-based algorithms, 
Li et al. [14] and Peng et al. [15] used a newly biologically in-
spired search algorithm called chaotic ant swarm (CAS). Gao et al. 
[16] proposed a novel artificial bee colony algorithm (ABC), with 
an optimization technique based on the foraging behavior of hon-
eybees. Li and Yin [5] combined the stochastic exploration of the 
cuckoo search and the exploitation capability of the orthogonal 
learning strategy (OLCS). Using evolutionary algorithm, Chan et al. 
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[17] applied an evolutionary programming (EP) approach. Peng 
et al. [18], and Banerjee and Abu-Mahfouz [19] used a differen-
tial evolution algorithm (DE). Wang and Li [20] used an effective 
hybrid quantum-inspired evolutionary algorithm with differential 
evolution (HQEDE). Li et al. [21] introduced a chaotic gravita-
tional search algorithm (CGSA). Additionally, Palaniyandi and Lak-
shmanan [22] introduced a simple method to estimate the system 
parameters in continuous dynamical systems from their time se-
ries in another approaches. Huang et al. [23] proposed an adaptive 
controller with parameters identification based on Lyapunov stabi-
lization theory. Zhao et al. [24] used an adaptive feed-back con-
trolling method to identify uncertain parameters for this chaotic 
system.

In this work, parameters estimation for chaotic systems is for-
mulated as a multidimensional optimization problem, and a hybrid 
swarm algorithm based on particle swarm–ant colony optimization 
(PSO–ACO) is implemented to solve the problem. To the best of the 
authors’ knowledge, this is the first research on a PSO–ACO algo-
rithm to estimate parameters of Lorenz chaotic system. Numerical 
simulations based on this system and comparisons with results ob-
tained by other methods demonstrate the effectiveness, efficiency 
and robustness of this hybrid swarm algorithm.

2. Hybrid swarm algorithm

The proposed hybrid technique is developed combining parti-
cle swarm optimization (PSO) and ant colony optimization (ACO). 
Proposed by Kennedy et al. [25], PSO is one of the recent meta-
heuristic algorithms based on the behavior of a flock of birds or the 
sociological behavior of a group of people. Furthermore, ACO is an 
algorithm based on the foraging behavior of ants, and it was first 
introduced by Dorigo and Gambardella [26]. Here, hybrid PSO–ACO 
is based on the common characteristics of particle swarm opti-
mization and ant colony optimization, like, survival as a swarm 
(colony) by coexistence and cooperation, individual contribution to 
food searching by a particle (ant) by sharing information locally 
and globally in the swarm (colony) between particles (ants) [27].

2.1. Description of PSO–ACO

The implementation of PSO–ACO algorithm consists of two 
stages. At the first stage, particle swarm optimization is applied, 
while ant colony optimization is applied at the second stage. Ant 
colony works as a local search, wherein, ants apply pheromone-
guided mechanism to refine the positions found by particles at the 
particle swarm stage [28].

PSO–ACO is initialized by a population of random particles and 
the algorithm searches for optima by updating generations. In 
this system, each particle is moved through the multi-dimensional 
search space by adjusting its position in search space according 
to its own experience and the experience of neighboring particles. 
Therefore, the particle makes use of the best position encountered 
by itself and by that of its neighbors’ to position itself towards an 
optimal solution [27]. The performance of each particle is evalu-
ated using a pre-defined fitness function, which encapsulates the 
characteristics of the optimization problem [29].

The position Si and the velocity V i of the i-th particle in 
the n-dimensional search space can be represented as Si =
(si

1, s
i
2, · · · , si

n)T and V i = (vi
1, v

i
2, · · · , vi

n)T , respectively. Each par-
ticle has its own best position P i = (pi

1, p
i
2, · · · , pi

n)T corre-
sponding to the personal best objective value obtained so far at 
generation t . And the global best particle is denoted by P g =
(pg

1 , pg
2 , · · · , pg

n )T , which represents the best particle found so far 
at generation t in the entire swarm [25].

Then, the velocity of each particle is given by:

vi
t+1 = ωt vi

t + c1r1(pi
t − si

t) + c2r2(pg
t − si

t) + c3r3(Ri
t − si

t) (1)

where ω is the inertia weight, c1 and c2 are the acceleration con-
stants, c3 is the passive congregation coefficient, Ri

t is a particle 
selected randomly from the swarm, and r1, r2, and r3 are the 
elements from three random sequences in the range (0, 1). The 
current position of the particle is determined by si

t , and vi
t+1 is 

the new velocity at time t + 1; pi
t is the best one of the solutions 

that this particle has reached and pg
t is the best one of the all so-

lutions that the particles have reached [27].
The new particle position is computed by adding the velocity 

vector to the current position. Thus, the position of each particle 
at each generation is updated according to the following equation:

si
t+1 = si

t + vi
t+1 (2)

where si
t+1 is the particle position at time instant t [25].

If f (si ) is the objective function (or fitness function) which will 
be minimized, then the best position pi can be determined by:

pi
t+1 =

{
pi

t if f (si
t+1) ≥ f (si

t)

si
t+1 if f (si

t+1) < f (pi
t)

(3)

and P g can be found by P g = pg
t+1 [29].

Variable ω in Eq. (1) is responsible for dynamically adjusting 
the velocity of the particles, which is responsible for balancing be-
tween local and global search. Hence this approach requires few 
iterations for reaching the convergence [30]. Note that, a low in-
ertia weight value implies a local search while a high value leads 
to a global search [1]. Applying a large inertia weight at the start 
of the algorithm and making it decay to a small value through the 
particle swarm optimization execution makes the algorithm glob-
ally search at the beginning of the search, and locally search at the 
end of the execution [27,29]. The following weighting function is 
used for Eq. (1):

ω = ωmax − ωmax − ωmin

tmax
t (4)

where the subscripts min and max are the minimum and maxi-
mum values selected for such parameters. Generally, the value of 
each component in V i can be clamped to the range [−vi

max, +vi
max]

to control the excessive roaming of particles outside the search 
space [30].

In PSO–ACO, a simple pheromone-guided mechanism of ant col-
ony optimization is proposed to be applied as a local search [31]. 
The ant colony algorithm handles a number of ants equal to the 
number of particles in the swarm. Each ant i generates a solution 
ξ i

t around pg
t the global best-found position among all particles in 

the swarm up to iteration count t as:

ξ i
t = N (pg

t , η) (5)

where N (pg
t , η) denotes a random number obtained by Gaussian 

function with mean value pg
t and standard deviation η, where ini-

tially at t = 1 value of η and is updated at the end of each iteration 
as:

η = η × d (6)

where d is a parameter in range 0.25 ≤ d < 1. If η < ηmin then 
η = ηmin , where ηmin is a parameter in (10−2, 10−4). In the stan-
dard ant colony algorithms, the probability of selecting a path with 
more pheromones is greater than those of other paths. Similarly, 
the probability of selecting a solution in the neighborhood of pg

t is 
greater than the others, in the Gaussian functions [32].

In this hybrid algorithm, the objective function value f (ξ i
t ) is 

computed and the current position of ant ξ i
t is replaced with the 

position si
t of the current position of the particle i in the swarm, 

only if f (si
t) ≥ f (ξ i

t ) and the current ant is in the feasible space 
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