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We study theoretically potential advantages of two-component mixtures in optical lattices with state-
dependent tunneling for approaching long-range-order phases and detecting easy-axis antiferromagnetic 
correlations. While we do not find additional advantages of mixtures with large hopping imbalance for 
approaching quantum magnetism in a harmonic trap, it is shown that a nonzero difference in hopping 
amplitudes remains highly important for a proper symmetry breaking in the pseudospin space for the 
single-site-resolution imaging and can be advantageously used for a significant increase of the signal-to-
noise ratio and thus detecting long-range easy-axis antiferromagnetic correlations in the corresponding 
experiments.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Due to a recent experimental realization of state-dependent 
optical lattices for two-component mixtures of ultracold 40K 
atoms with the magnetic-field-gradient technique and low heat-
ing rate [1] it is now much easier to access and study asymmetric 
lattice models without a necessity of using heteronuclear fermionic 
mixtures (e.g., 6Li–40K) or long-living metastable electronic states 
of the same fermionic isotope (e.g., 3P0 state of 173Yb). Among po-
tential applications of this technique one can suggest approaching 
long-range magnetically-ordered states [2]. It is known that quan-
tum magnetism in ultracold fermionic mixtures is one of major 
experimental challenges nowadays and a significant progress al-
ready has been made in this direction. In particular, short-range 
antiferromagnetic (AFM) correlations were effectively measured [3,
4] and their unique dynamics in the presence of the tunable lattice 
geometry was observed recently [5].

Considering two-component fermionic mixtures from the point 
of view of theoretical models and spin symmetries, optical lattices 
with state-dependent (i.e., spin-dependent) hopping amplitudes ef-
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fectively break the initial continuous SU(2) symmetry of the sys-
tem described by the Hubbard model towards U(1) ×Z2, where Z2
is a discrete reflection symmetry along the easy axis. The easy-axis 
direction is important, in particular, for the experimental detec-
tion of AFM correlations based on the Bragg spectroscopy analy-
sis [4,6] and on the quantum-gas-microscope technique (QGMT). 
Despite the fact that temperatures and entropies1 achieved with 
recent successful developments of the QGMT for fermionic mix-
tures [7–12] are high to observe long-range magnetic correlations, 
thus further optimizations and improvements in cooling protocols 
are required, it is important to study characteristic dependencies 
of these thermodynamic quantities on other system parameters 
(including different symmetries of magnetic ground states), thus 
determine the most optimal regime for in situ imaging of the long-
range AFM correlations.

2. Theoretical description

Ultracold two-component fermionic mixtures in optical lattices 
with a sufficiently strong lattice potential, V lat � 5Er, where Er is 

1 The entropy per particle is more crucial quantity in the context of ultracold-
atom experiments, since the system does not exchange heat with environment and 
its parameters can be changed adiabatically.
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the recoil energy of atoms, are well described by the single-band 
Hubbard model with the Hamiltonian

Ĥ = −
∑
〈i j〉

∑
σ

tσ (ĉ†
iσ ĉ jσ + h.c.) + U

∑
i

n̂i↑n̂i↓

+ V
∑

i

(ri/a)2n̂i −
∑

i

∑
σ

μσ n̂iσ , (1)

where tσ is the hopping amplitude of fermionic species in a par-
ticular atomic hyperfine state that we denote by the spin-1/2 index 
σ = {↑, ↓}, thus we consider here and below two atomic com-
ponents as pseudospins, ĉ†

iσ (ĉiσ ) is the corresponding creation 
(annihilation) operator of atoms at the lattice site i, the nota-
tion 〈i j〉 indicates a summation over nearest-neighbor sites, and 
U is the magnitude of the on-site repulsive (U > 0) interaction of 
the two different species with corresponding densities n̂i↑ and n̂i↓
(n̂iσ = ĉ†

iσ ĉiσ ). In the third term, V is the amplitude of the exter-
nal harmonic potential, ri is the distance from the lattice site i to 
the trap center, and a is the lattice spacing. In the last term, μσ is 
the chemical potential that determines the total number of atoms 
of each spin component in the system.

Note that the asymmetric Hubbard model (1) (it can also be 
recognized as the extended Falicov–Kimball model for spinless 
fermions in the context of solid-state materials [13]) can be trans-
formed to an anisotropic Heisenberg (or a spin-1/2 XXZ) model in 
the limit of U/tσ � 1 and ni ≈ 1. The latter is described by the 
Hamiltonian

ĤX X Z = J‖
∑
〈i j〉

Ŝ Z
i Ŝ Z

j + J⊥
∑
〈i j〉

( Ŝ X
i Ŝ X

j + ŜY
i ŜY

j )

− �μ
∑

i

Ŝ Z
i , (2)

with the constants J‖ = 2(t2↑ + t2↓)/U , J⊥ = 4t↑t↓/U , �μ = (μ↑ −
μ↓), and the spin-1/2 operators Ŝ R

i = 1
2 ĉ†

iασ R
αβ ĉiβ (here and be-

low we use units h̄ = 1), where σ R are the Pauli matrices (R =
{X, Y , Z}). Hence, we see that the presence of hopping imbalance 
(t↑ �= t↓) results in J‖ > J⊥ , thus breaks the SU(2) rotational spin 
symmetry towards U(1) ×Z2, where the discrete symmetry Z2 can 
be broken either spontaneously by long-range AFM ordering along 
the Z axis or by the chemical potential difference �μ �= 0 that 
plays a role of the external magnetic field favoring the ferromag-
netic configuration along the same axis. Naturally, with an increase 
of �μ at the fixed asymmetry in hopping amplitudes the easy-axis 
(Ising-type) AFM configuration becomes less and less energetically 
favorable, thus a transition to another AFM-ordered easy-plane 
(canted) many-body state becomes possible (see Refs. [14–16] for 
more details).

Therefore, to avoid a potential competition between different 
types of AFM ordering that can also result in a significant sup-
pression of critical temperatures, in the original model (1) we con-
sider chemical potentials the same for both spin components (i.e., 
μ↑ = μ↓ ≡ μ). Note that asymmetric hopping amplitudes t↑ �= t↓
together with μ↑ = μ↓ result in a nonzero polarization, i.e. not 
equal total numbers of particles in two spin states (N↑ �= N↓), of 
the trapped system [2,16], but this condition is the most optimal 
for the easy-axis AFM ground state of the model (1) at half filling 
(e.g., at μ = U/2 and ri = 0), as discussed above.

Below, we consider a three-dimensional optical lattice setup 
with the Hubbard parameters entering Eq. (1) that are set close 
to the experimental values [1]. In particular, we focus on two op-
posite limits: (i) zero (or very small) hopping imbalance t↑ = t↓ = t
and (ii) large hopping imbalance (e.g., t↑ = 0.54t and t↓ = 0.06t). 
According to Ref. [1], both cases can be effectively realized by the 
magnetic-field-gradient technique with a high level of control.

Our theoretical analysis is based on the dynamical mean-field 
theory (DMFT) [17] with the exact diagonalization solver [18] and 
the number of orbitals ns = 5 per each spin component in the 
corresponding Anderson impurity model. Since we are interested 
mostly in the easy-axis observables, in DMFT it is enough to ac-
count for the standard hybridization terms between the impurity 
and the bath [18]. The corresponding Anderson parameters of the 
impurity model are found iteratively till the convergence based on 
DMFT self-consistency conditions [17] is reached. For the given val-
ues of the Hubbard parameters our approach allows to calculate 
the local observables, such as expectation values of the density 
of particles of any spin component, the double and the hole oc-
cupancy, as well as the fluctuations of the particle number on a 
particular lattice site.

To account for the inhomogeneity effects produced by the ex-
ternal trap, we use DMFT with the local density approximation 
(LDA + DMFT). Note that LDA does not account for the proximity 
effects close to the phase boundaries, however in the cases under 
study these effects do not play a crucial role leading only to minor 
corrections. Within LDA we obtain the local observables at the spe-
cific point r of the trap from the condition μ(r) = μ0 − V (r/a)2, 
where μ0 is the chemical potential in the trap center that for the 
fixed values of the Hubbard parameters defines also the total num-
ber of particles in the system.

From the converged solutions of LDA + DMFT on different lat-
tice sites (i.e., with different r) one can analyze the dependence of 
the local observables on the distance r (see also Ref. [19] for more 
details). In particular, by combining the results with the Maxwell 
relation ∂s/∂μ = ∂n/∂T we obtain the entropy per lattice site at 
the particular point r0 of the trap (for simplicity, we use the units 
of kB = 1 and a = 1 below)

s(r0) = 2V

Rmax∫
r0

∂n(r, U , T )

∂T
rdr, (3)

where the cut-off distance Rmax is determined from the condition 
n(Rmax, U , T ) = 0.

A subsequent integration of the entropy and density distribu-
tions in the trap determine the total entropy S and the total num-
ber of particles N in the system (here and below we assume the 
axial-symmetric three-dimensional setup)

S =
Rmax∫
0

s(r)4πr2dr, N =
Rmax∫
0

n(r)4πr2dr. (4)

Both quantities, S and N , can be considered as the preserved num-
bers in the experiment (and, in particular, during the lattice ramp) 
that allows to access the initial values for the entropy and temper-
ature. Note that, alternatively, one can also introduce an additional 
term corresponding to the amount of entropy per particle �s that 
is added to the system due to uncontrolled heating processes dur-
ing the lattice ramp, as it was done in Ref. [3]. Below, for simplicity 
and consistency reasons, we consider that the change in system 
parameters can be performed adiabatically (�s = 0).

In order to determine the initial temperature T̃ in the sys-
tem that is necessary for observations of the many-body quantum 
phases under study we use the expression for the entropy of the 
Fermi gas under assumption of a moderate scattering length as
(kF|as| < 1/2) [20]

S ≈ Nπ2 T̃ /TF. (5)

Eqs. (3)–(5) allow to set a direct correspondence between thermo-
dynamic quantities before and after the lattice ramp. Therefore, the 
problem can be effectively solved under assumption of adiabaticity 
of the ramp process.
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