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1. Introduction

The simplest non-trivial Hilbert space is the two-dimensional 
one, which describes a spin 1/2 or a qubit. The measurement of 
a spin 1/2 as realized in the Stern–Gerlach experiment1 [1] epit-
omizes the ideal quantum measurement, even though a realistic 
description of the measurement involves some complications [3].

The next simplest system in quantum mechanics is provided 
by a three-dimensional Hilbert space, which can be realized, for 
instance, by a system with spin one. In the current jargon of quan-
tum information, three-level systems are known as qutrits. They 
are known to provide higher-security quantum cryptography than 
qubits [4,5]. Furthermore, it has been demonstrated that qutrits 
can be efficiently engineered and controlled, by using nonlinear 
optical techniques on bi-photons [6,7]. Spin-1 systems are impor-
tant also for fundamental issues, as the Kochen–Specker theorem 
requires an Hilbert space at least three-dimensional [8]. In this 
context, the possibility of realizing an arbitrary projective mea-
surement was questioned [9] (we remark that a pure state ψ of a 
spin-1/2 system is always an eigenstate of a spin component n · S, 
so that any projective measurement reduces to the measurement 
of a spin-component, but the same does not hold for a spin-1 sys-
tem). This challenge was answered positively [10]. The validity of 
Kochen–Specker theorem for unsharp measurements on a spin-1 
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1 We remark that the Stern–Gerlach experiment provided the earliest direct ev-
idence for the existence of spin, even though the hypothesis of spin would be 
advanced by Pauli only in 1924, two years after the experiment. Actually, Stern and 
Gerlach believed that the silver atoms had an angular momentum L = 1, and their 
goal was to verify Bohr’s prediction that the possible values of Lz are quantized. 
The fact that the line corresponding to Lz = 0 was missing from the experiment 
was overlooked. See [2] for a recent historical account.

system was also questioned [11–14], and it was shown that the 
theorem holds if the unsharpness is distributed covariantly [15].

Spin-1 systems are the only ones, besides the spin-1/2 systems, 
that satisfy a generalized idempotence relation S3 = S . To the 
best of my knowledge, there is no study of the general (i.e., non-
projective) measurement of a spin-1, while a spin-1/2 has been 
treated quite extensively [3,16–18]. In this manuscript, I am going 
to fill this gap, by studying a measurement of a spin-1 system fol-
lowed, possibly, by a post-selection [19]. General measurements, 
i.e., Positive-Operator Valued measures, are discussed in the books 
[20–23]; in particular, non-demolition measurements were treated 
in [24]. Here, we shall consider linear non-demolition measure-
ments, which means that the coupling between the detector and 
the system is linear in the measured operator Ŝ , and that the latter 
is conserved during the measurement process.

In principle, for the special case of a detector having a continu-
ous output, one could use the exact formal solution developed by 
Dressel and Jordan in [25,26], where the final density matrix of the 
system is expressed in terms of the initial density matrix and the 
initial Wigner function of the probe. However, these results apply 
only to the case when the readout variable of the detector is either 
canonically conjugated to or coincides with the variable appear-
ing in the interaction, and the expression requires expanding the 
Wigner function in a series of its second argument, and then re-
summing, if possible, all the terms in the series. While for a spin-1 
system it is possible to do so, as we show in Appendix A, the pro-
cedure is unnecessarily complicated, and the more straightforward 
approach used here is better suited to the task. In Appendix B, we 
provide a slight improvement on the general formula of [25], by 
showing that it can be expressed in terms of the quantum charac-
teristic function.

Finally, as our results apply to a detector having a discrete 
spectrum, they may be useful in Nuclear Magnetic Resonance im-
plementations, where two nuclei, one with spin 1 the other with 
spin S ≥ 1, interact. A recent realization of weak measurements 
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(which is a limiting case of the results we present below) in NMR 
was reported in [27].

2. Background

2.1. A useful property of a spin-one operator

In the following, we shall exploit the formula valid for a spin 1,

exp (iφ Ŝ) = 1 + i sin (φ) Ŝ − [1 − cos (φ)] Ŝ2, (1)

which follows from

Ŝ3 = Ŝ. (2)

We remark that this is the only property of the spin-one operator 
that we are going to exploit, so that the results presented here 
apply to any operator satisfying (2), not only operators on qutrits. 
In other words, the results of the present manuscript apply to any 
operator having eigenvalues in the set {−1, 0, 1}. Furthermore, the 
results can be trivially extended to any operator X̂ having three 
equally spaced eigenvalues x1, x2, x3, x2 − x1 = x3 − x2 = �x, by 
making the shift and rescaling X̂ = �xŜ + x2.

In particular, an operator satisfying Ŝ2 = 1, e.g. a Pauli matrix 
representing a spin-1/2, satisfies also (2), so that the following 
results apply to this case as well, after applying the further restric-
tion Ŝ2 = 1. As the exact solution of a measurement of a spin-1/2
is well known [16–18,28–30], it will provide a reference check. Fur-
thermore, a projection operator satisfies as well (2), but Ŝ2 = Ŝ . 
Thus, the results presented in the following subsume both those 
for the measurement a spin-1/2 and those for the measurement 
of a yes/no operator.

Another example of particular relevance where (2) holds is that 
of two spin 1/2. Their total spin is a 4 × 4 matrix, giving a re-
ducible representation of SU(2). The sector corresponding to the 
singlet is represented by the scalar 0, while the sector correspond-
ing to the total spin 1 is represented by a 3 ×3 operator S3, namely

S =
(

0 0†
3

03 S3

)
(3)

with 03 the null vector in three dimensions.
Recently, Aharonov et al. have proposed to realize a quantum 

Cheshire cat [31] by measuring the presence of a particle at a lo-
cation, and its polarization at a separated location. In this case, in 
the first location, a yes/no measurement is occurring, while in the 
second location a measurement of a local spin operator σ is taking 
place. The latter operator can have the values +1 or −1 if the par-
ticle is there, and the value 0 if the particle is not there. Therefore, 
the results presented in the following are relevant to extend the 
study of the quantum Cheshire cat to an arbitrary coupling [32].

2.2. Description of the measurement

In a measurement, before the interaction, the system and the 
detector are assumed to be uncorrelated, having a density matrix

ρ− = ρi ⊗ ρdet; (4)

the evolution operator of the system and the detector is taken to 
be the von Neumann interaction

U = exp(i Q̂ Ŝ), (5)

with Q̂ an operator on the Hilbert space of the detector. The final 
entangled density matrix is thus

ρ+ = exp(i Q̂ Ŝ) (ρi ⊗ ρdet)exp(−i Q̂ Ŝ). (6)

We shall call the procedure a canonical measurement when the 
readout P̂ has eigenstates | j〉 such that exp(i Q̂ S) translates one of 
them, say | j0〉, into distinct eigenstates | j S 〉, with S eigenvalues of 
the measured operator. Furthermore, we shall call the measure-
ment ideal when the detector is prepared initially in the state 
ρdet = | j0〉〈 j0|. A von Neumann measurement is an ideal canon-
ical measurement. In the present manuscript, however, we shall 
consider measurements that obey (5), and we shall not make the 
hypotheses of a canonical and ideal measurement, unless other-
wise specified. Thus, we are using a von Neumann interaction, but 
we are dropping any further hypothesis behind the von Neumann 
model of measurement. In the case that the observable P̂ of the 
detector is not canonically conjugated to Q̂ , the procedure could 
not be properly called a measurement, but perhaps an observa-
tion, in the sense that observing P̂ reveals something about the 
system, even though it is not a measurement of any observable 
Ŝ . In particular, e.g., we could have P̂ = Q̂ , so that the variable 
does not change with the time-evolution operator U = exp(i Q̂ Ŝ). 
In this case, observing Q̂ does not yield information about Ŝ , but 
about the “logarithmic directional derivative of the post-selection 
probability along the flow generated by the unitary action of the 
operator Ŝ” [26].

2.3. Post-selection

The system may be postselected in a state E f , represented by 
a positive operator not necessarily having trace one [19,33–36]
by making a subsequent measurement. More precisely, the post-
selected state is the normalized semipositive definite operator 
E f / Tr(E f ), which allows to make retrodictions about the past be-
havior of the system and which differs, in general, from the predic-
tive state after the measurement ρ f . Indeed, the two states coin-
cide only if the post-selection measurement is a projective one. For 
instance, one could make a projective measurement of an observ-
able Ŝ f , and analyze the output of the detector separately for each 
possible outcome S f [19]. In this case, the post-selection states are 
the projectors E f = |S f 〉〈S f |; or one could make a POV measure-
ment of the system [37], then E f are not necessarily projectors; 
or, still, one could make a probabilistic post-selection of the data 
[29].

The reduced density matrix of the detector, for a given post-
selection, is

ρdet| f = Trsys[(E f ⊗ 1)ρ+]
Trsys,det[(E f ⊗ 1)ρ+] (7)

with Tr the trace, and Trsys the partial trace on the Hilbert space 
of the system. The normalization factor Trsys,det[(E f ⊗1)ρ+] is the 
probability of successful post-selection P f .

3. Results

3.1. General formula

Usually, the output to be observed in the detector is P̂ , the 
variable conjugated to Q̂ . This implicitly requires that the detec-
tor has an infinite-dimensional Hilbert space, so that one can de-
fine canonically conjugated position and momentum operators. We 
shall not make this assumption and let, instead, the Hilbert space 
of the detector to be arbitrary.

Let us start by computing the probability of post-selection. Af-
ter substitution of (1) into (6), and expressing the trace over the 
detector Hilbert space in terms of position eigenstate, Trdet[. . .] =∫

dQ 〈Q | . . . |Q 〉, we have

P f = ω
{

1 − 2ŝA′′
w + ŝ2 B w − 2t̂C ′

w + 2ŝt̂ D ′′
w + t̂2 E w

}
, (8)
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